Organic & Biomolecular Chemistry

Cite this: Org. Biomol. Chem., 2011, 9, 7113

Dynamic Article Links 🕟

PAPER

Anthranilic acid-based inhibitors of phosphodiesterase: Design, synthesis, and bioactive evaluation[†]

Yih-Dih Cheng,^{‡a,b} Tsong-Long Hwang,^{‡a} Han-Hsiang Wang,^a Tai-Long Pan,^c Chin-Chung Wu,^d Wen-Yi Chang,^a Yi-Ting Liu,^a Tzu-Chi Chu^a and Pei-Wen Hsieh^{*a}

Received 6th May 2011, Accepted 30th June 2011 DOI: 10.1039/c1ob05714f

Our previous studies identified two 2-benzoylaminobenzoate derivatives **1**, which potently inhibited superoxide (O_2^{--}) generation induced by formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) in human neutrophils. In an attempt to improve their activities, a series of anthranilic acid derivatives were synthesized and their anti-inflammatory effects and underlying mechanisms were investigated in human neutrophils. Of these, compounds **17**, **18**, **46**, **49**, and **50** showed the most potent inhibitory effect on FMLP-induced release of O_2^{--} in human neutrophils with IC₅₀ values of 0.20, 0.16, 0.15, 0.06, and 0.29 μ M, respectively. SAR analysis showed that the activities of most compounds were dependent on the ester chain length in the A ring. Conversely, a change in the linker between the A and B ring from amide to sulfonamide or *N*-methyl amide, as well as exchanges in the benzene rings (A or B rings) by isosteric replacements were unfavorable. Further studies indicated that inhibition of O_2^{--} production in human neutrophils by these anthranilic acids was associated with an elevation in cellular cAMP levels through the selective inhibition of phosphodiesterase 4. Compound **49** could be approved as a lead for the development of new drugs in the treatment of neutrophilic inflammatory diseases.

1. Introduction

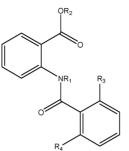
Inflammatory lung diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis, and lung injury are caused by activated neutrophils recruiting and releasing chemoattractants into the airway.^{1,2} Although neutrophils play a critical role in the defense of the human body against infections, abnormal activation of neutrophils releases high concentrations of reactive oxygen species (ROS) and elastase, and mediates immunological insults and oxidative damage.² The formation of superoxide anion (O_2^{-}) , a precursor of other ROS, by NADPH oxidase in human neutrophils is directly or indirectly linked to damage or destruction of surrounding tissues.^{3,4} Several experimental studies showed that oxidant stress enhances many pathological processes in various inflammatory diseases and leads to harmful tissue damage.⁵ Therefore, it is crucial to prevent neutrophil oxidative burst in inflammatory tissues and organs. To our knowledge, the cyclic nucleotide cAMP is an important second messenger in preventing activation

^aGraduate Institute of Natural Products, Chang Gung University, Taoyuan, 33302, Taiwan. E-mail: pewehs@mail.cgu.edu.tw; Fax: +886-3-211-8643; Tel: +886-3-211-8800, ext. 3105

‡ These authors contributed equally to this work.

of neutrophils.^{6,7} Phosphodiesterases (PDEs) are important in regulating intracellular concentrations of cAMP by catalyzing its hydrolysis and inactivating cAMP. Thus, PDE inhibitors are currently being investigated as anti-inflammatory drugs because of their suppressive effects on neutrophil function.^{6,8-10} PDEs have been classified into 11 families (PDE1-PDE11) based on protein sequence, structure, substrate specificity, enzymatic properties, and tissue distribution.¹¹ Among these, PDE3 and PDE4 were found in neutrophils and were observed to regulate intracellular cAMP levels and modulate the activation of neutrophils.^{12,13} However, on the basis of our unpublished data, only PDE4 inhibitors exhibited an inhibitory effect on $O_2^{\bullet-}$ generation in neutrophils. Therefore, we hypothesize that evaluating the inhibitory effect on O₂⁻⁻ generation in neutrophils is a new way of investigating specific PDE4 inhibitors, and may be the target for a new generation of agents in the treatment of neutrophilic inflammatory disease.

Anthranilic acid derivatives have been recognized to have diverse biological activities,¹⁴⁻³¹ in particular, they are enzymatic inhibitors of VEGF receptor kinase,¹⁴ matrix metalloproteinase (MMP),¹⁵ acyl carrier protein synthase (AcpS),¹⁶ methionine aminopeptidase-2,^{17,18} phospholipase A₂,¹⁹ human hydroxysteroid dehydrogenase AKR1C1,²⁰ plasminogen activator inhibitor-1,²¹ and cholecystokinin (CCK).²²⁻²⁴ In addition, they also exhibit anti-cancer, anti-hepatitis C virus (anti-HCV), anti-Alzheimer, anti-inflammatory, anti-platelet, and anti-bacterial activities.²⁵⁻³⁵ Of these, the *N*-phenylanthranilic acids, *e.g.* mefenamic acid analogs, have been used as anti-inflammatory agents in therapy.²⁹⁻³¹ Our previous studies identified two 2-benzoylaminobenzoate


^bChang Gung Memorial Hospital, Chia-Yi, 613, Taiwan

^cSchool of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 33302, Taiwan

^dGraduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 807, Taiwan

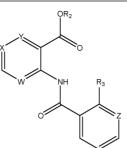
[†] Electronic supplementary information (ESI) available: HPLC analysis of the target compounds. See DOI: 10.1039/c1ob05714f

 Table 1
 Inhibitory effects of 2-benzoylaminobenzoic esters and N-methyl 2-benzoylaminobenzoic esters on superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB

				Anti-inflammation (µM) ^a	
	\mathbf{R}_1	\mathbf{R}_2	R_{3}/R_{4}	O ^{2•-} generation	NE release
1 ^{<i>b</i>}	Н	CH ₃	F/H	0.64 ± 0.01	> 20
Sivelestat ^b		2		> 20	0.050 ± 0.0002
8	Н	CH_2CH_3	Cl/H	0.76 ± 0.26	> 20
9	Н	CH ₂ CH ₃	Br/H	6.92 ± 2.54	> 20
10	Н	CH ₂ CH ₂ CH ₃	F/H	> 20	> 20
11	Н	CH ₂ CH ₂ CH ₃	Cl/H	> 20	> 20
12	Н	CH ₂ CH ₂ CH ₃	Br/H	> 20	> 20
13	Н	CH ₂ CH ₂ CH ₂ CH ₃	F/H	> 20	> 20
14	Н	CH ₂ CH ₂ CH ₂ CH ₃	Cl/H	> 20	> 20
15	Н	CH ₂ CH ₂ CH ₂ CH ₃	Br/H	> 20	> 20
16	Н	CH ₃	F/F	0.62 ± 0.07	> 20
17	Н	CH ₂ CH ₃	F/F	0.20 ± 0.03	> 20
18	Н	CH ₂ CH ₂ CH ₃	F/F	0.16 ± 0.03	> 20
19	CH ₃	CH ₃	F/F	> 20	> 20
20	CH ₃	CH ₂ CH ₃	F/F	> 20	> 20
21	CH ₃	CH ₂ CH ₂ CH ₃	F/F	> 20	> 20

derivatives, 1, which potently inhibited O_2^{-} generation induced by formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) in human neutrophils.32,36 Furthermore, derivative 1 was able to elevate cAMP levels by inhibiting phosphodiesterase, and attenuate hemorrhagic shock-induced lung injury in rats.³⁶ Accordingly, the leading agent of phosphodiesterase inhibitors, 1, was modified in an attempt to improve anti-inflammatory activity by increasing the ester chain length, changing the amide to sulfonamide or Nmethyl amide, as well as extending the space between the two aromatic rings. Furthermore, replacing the aromatic rings with isosteres is also discussed. All synthetic compounds (Tables 1-4) were evaluated for their *in vitro* inhibitory effects on O_2^{\bullet} generation induced by FMLP in human neutrophils. Herein, we report on the synthesis of anthranilic acid derivatives, as well as their pharmacological data and structure-activity relationships (SARs).

2. Chemistry


Initially, corresponding anthranilic and *N*-methyl anthranilic esters were synthesized by refluxing anthranilic or *N*methyl anthranilic acids, respectively, in alcohols/c-H₂SO₄ solutions to yield intermediates, which were subsequently reacted with corresponding substituted benzoyl chlorides to obtain 2-benzoylaminobenzoic esters (8–18) and *N*-methyl 2benzoylaminobenzoic esters (19–21) (Table 1 and Scheme 1). To study the isosteres of the aromatic rings, 2-aminopyridine-3carboxylic acid, 4-aminonicotinic acid, and 3-amino-2-pyrazine carboxylate were esterified and then coupled with the corresponding substituted benzoyl chlorides to afford 22-27 (Table 2 and Scheme 1). Furthermore, the anthranilic esters were transformed to 2-phenylsulfonamidobenzoic esters (29-37, Table 3) by reacting with the corresponding benzenesulfonyl chloride (Scheme 2). 2-Phenylacetamidobenzoic esters (40-51, Table 4) were prepared by a coupling reaction with 2-benzoylaminobenzoic esters and the corresponding phenylacetic acids in HBTU/DIEA/DCM solution (Scheme 3). In addition, conversion of 2-benzoylaminobenzoic esters to 3phenylpropanamidobenzoic esters (52-54, Table 4, Scheme 3) and 2-cinnamamidobenzoic esters were described using the above protocol (56 and 58, Scheme 4). Accordingly, all synthetics (Tables 1-4) were fully characterized using spectroscopic data. The spectroscopic data of the new compounds (10-15, 18-26, 34-37, 42-48, 49-54, and 58) are shown in the experimental section.

3. Results and discussion

Neutrophil function assay

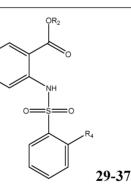

All synthetics (8–27, 29–37, 40–54, 56, and 58) and positive controls (1 and sivelestat) were subjected to O_2 ⁻ generation and neutrophil elastase release with FMLP as the inducer in neutrophils. Of these, five compounds 17, 18, 46, 49, and 50 exhibited the most potent and selective inhibitory effects on

 Table 2
 Inhibitory effects of the isosteres of 2-benzoylaminobenzoic esters on superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB

				Anti-inflammation (µM) ^a	
	\mathbf{R}_2	R ₃	W/X/Y/Z	O ² - generation	NE release
1 ^{<i>b</i>}	CH ₃	F	CH/CH/CH/CH	0.64 ± 0.01	>20
Sivelestat ^b				>20	0.050 ± 0.0002
8	CH_2CH_3	Cl	CH/CH/CH/CH	0.76 ± 0.26	>20
9	CH_2CH_3	Br	CH/CH/CH/CH	6.92 ± 2.54	>20
22	CH_2CH_3	F	CH/N/CH/CH	1.00 ± 0.20	>20
23	CH_2CH_3	F	N/CH/CH/CH	0.45 ± 0.17	>20
24	CH ₂ CH ₃	Cl	N/CH/CH/CH	12.20 ± 6.97	>20
25	CH ₂ CH ₃	Br	N/CH/CH/CH	11.32 ± 5.92	>20
26	CH ₃	F	N/CH/N/CH	>20	>20
27	CH ₂ CH ₃	Cl	CH/CH/CH/N	10.92 ± 2.86	>20

 Table 3
 Inhibitory effects of the isosteres of 2-phenylsulfonamidobenzoic esters on superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB

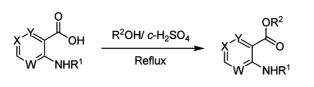
			Anti-inflammation $(\mu M)^a$	
	\mathbf{R}_2	\mathbf{R}_4	O ² generation	NE release
1 ^{<i>b</i>}	CH ₃	F	0.64 ± 0.01	> 20
Sivelestat ^b	-		> 20	0.050 ± 0.0002
29	CH_3	F	> 20	> 20
30	CH ₃	Cl	> 20	> 20
31	CH ₃	Br	> 20	> 20
32	CH ₂ CH ₃	F	6.10 ± 2.14	> 20
33	CH_2CH_3	Cl	2.42 ± 0.15	> 20
34	CH_2CH_3	Br	2.43 ± 0.16	> 20
35	CH ₂ CH ₂ CH ₃	F	2.02 ± 0.56	> 20
36	CH ₂ CH ₂ CH ₃	Cl	1.05 ± 0.40	11.39 ± 2.23
37	CH ₂ CH ₂ CH ₃	Br	0.74 ± 0.0007	> 20

 Table 4
 Inhibitory effects of the isosteres of 2-phenylacetamidobenzoic esters and 3-phenylpropanamidobenzoic esters on superoxide anion generation and elastase release by human neutrophils in response to fMLP/CB

	OR2 ONH ONH		OR2 ONH O	R5	
		^I ^{R₅} 40-54		56 and 58 Anti-inflammation (µM)	1
	\mathbf{R}_2	R ₅	n	$O^{2^{\bullet-}}$ generation	NE release
1 ^b Sivelestat ^b	CH ₃	F	0	0.64 ± 0.01 > 20	> 20 0.050 ± 0.0002
40	CH_3	F	1	1.18 ± 0.10	> 20
41	CH ₃	Cl	1	1.35 ± 0.01	> 20
42	CH ₃	Br	1	3.42 ± 1.04	> 20
43	CH ₂ CH ₃	F	1	0.47 ± 0.33	> 20
44	CH ₂ CH ₃	Cl	1	0.57 ± 0.38	> 20
45	CH ₂ CH ₃	Br	1	0.66 ± 0.11	> 20
46	CH ₂ CH ₂ CH ₃	F	1	0.15 ± 0.03	> 20
47	$CH_2CH_2CH_3$	Cl	1	0.39 ± 0.004	> 20
48	CH ₂ CH ₂ CH ₃	Br	1	0.48 ± 0.21	17.60 ± 7.76
49	CH ₂ CH ₂ CH ₂ CH ₃	F	1	0.06 ± 0.01	> 20
50	CH ₂ CH ₂ CH ₂ CH ₃	Cl	1	0.29 ± 0.09	> 20
51	CH ₂ CH ₂ CH ₂ CH ₃	Br	1	0.67 ± 0.41	> 20
52	CH ₂ CH ₃	F	2	0.95 ± 0.19	> 20
53	CH ₂ CH ₃	Cl	2	1.57 ± 0.42	> 20
54	CH ₂ CH ₃	Br	2	> 20	> 20
56	CH_2CH_3	F	—	> 20	> 20
58	CH ₂ CH ₃	Cl	_	> 20	> 20

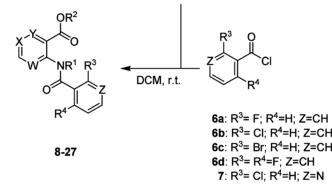
^a Concentration necessary for 50% inhibition (IC₃₀). ^b Compound 1 and sivelestat were used as positive controls.

FMLP-induced O_2^{-} generation in neutrophils with IC₅₀ values of 0.20, 0.16, 0.15, 0.06, and 0.29 μ M, respectively.

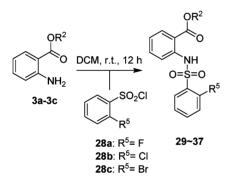

The neutrophil function assay data and SAR analysis showed the enhancement of activity in most synthetics, e.g. compounds 16–18 and 29–51, where the ester chain length in the A ring was increased. A change in the linker between the A and B rings from amide to sulfonamide drastically reduced the inhibitory effect, as seen for 29-34. The activities of N-methyl amide derivatives (19-21) vanished due to removal of the intramolecular hydrogen bond, which results in a drastic loss of binding affinity.³⁷ Furthermore, except for 23, exchanges in the benzene rings (A or B rings) of 1 by different isosteric replacements (22-27) were unfavorable. There are many reports that demonstrate that replacing the CH with an N at each of the aromatic sites leads to improved aqueous solubility, preserves hydrogen bonding, or reduces metabolism.³⁸ However, the N atom in aromatic rings acts as an electron-withdrawing substitution changing the inductive effect or resonance, and modifies the hydrogen-bonding intensity of the amide between the A and B rings, thus the activities of compounds 22–27 were decreased.

To investigate the bioactive relationship of the spacer between the two aromatic rings, compounds **43–51** were synthesized and they showed an increase in inhibitory effects as the spacer length was increased by one carbon atom, whereas the activities were reversed when the spacer length was increased by two carbon atoms (52–54). Moreover, the activities were attenuated by the replacement of a 3-phenylpropanoyl moiety in anthranilic acid (52–54) with a cinnamoyl moiety (56 and 58).

cAMP level determination


Compound 1 was able to enhance cAMP levels and PKA activity by inhibiting phosphodiesterase. To gain further insight into the mechanism of action of active synthetics, cAMP levels in the presence of these active compounds were determined. Neutrophils were incubated with compounds 17, 18, 21, and 49 (1 μ M) as described above, and an enzyme immunoassay kit was used to determine cAMP concentrations.³⁶ The results showed that compound 49 exhibited the most potent inhibitory effects on cAMP degradation, however, 21, a non-active component for inhibiting O₂⁻⁻ generation in neutrophils, had no effect on modulating cAMP levels (Fig. 1). These results suggested and confirmed that cAMP is involved in the inhibitory effects on O₂⁻⁻ generation.

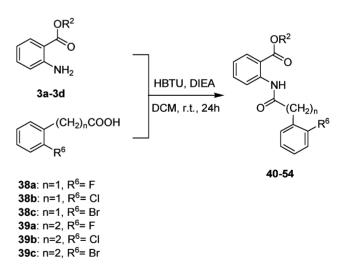
Additionally, in an attempt to examine whether cAMP was involved in the inhibitory effect on O_2 ⁻⁻ generation of **49**, a PKA



2a: R¹= H; W=X=Y= CH 2b: R¹= CH₃; W=X=Y= CH 2c: R¹= H; W=Y=CH; X= N 2d: R¹= H; W=N; X=Y= CH 2e: R¹= H; W=Y= N; X= CH

3a: R^{1} = H; R^{2} = CH₃; W=X=Y=CH **3b**: R^{1} = H; R^{2} = CH₂CH₃; W=X=Y=CH **3c**: R^{1} = H; R^{2} = CH₂CH₃CH₃; W=X=Y=CH **3d**: R^{1} = H; R^{2} = CH₂CH₂CH₃CH₃; W=X=Y=CH **4a**: R^{1} = CH₃; R^{2} = CH₂CH₃; W=X=Y=CH **4b**: R^{1} = CH₃; R^{2} = CH₂CH₃; W=X=Y=CH **4c**: R^{1} = CH₃; R^{2} = CH₂CH₃; W=X=Y=CH **4c**: R^{1} = CH₃; R^{2} = CH₂CH₃; W=X=Y=CH **5a**: R^{1} = H; R^{2} = CH₂CH₃; W=Y=CH; X= N **5b**: R^{1} = H; R^{2} = CH₂CH₃; W=N; X=Y= CH **5c**: R^{1} = H; R^{2} = CH₂CH₃; W=Y=N; X= CH

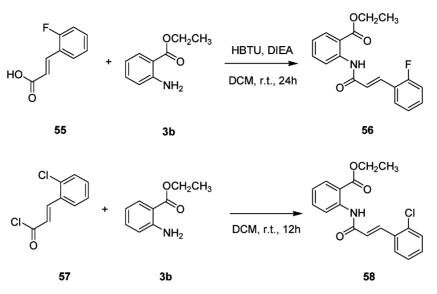
Scheme 1 The route for the preparation of compounds 8–27.



Scheme 2 The route for the preparation of compounds 29–37.

inhibitor, H89 (3 μ M), was used to elucidate the mechanism. The result showed negative regulation of FMLP-caused human neutrophil O₂⁻⁻ generation mediated by **49** was reversed by H89 (Fig. 2). This suggests that cAMP/PKA-dependent pathway mediates the inhibition of FMLP/CB-activated O₂⁻⁻ production caused by **49**.

Inhibitory effects of compounds on PDEs

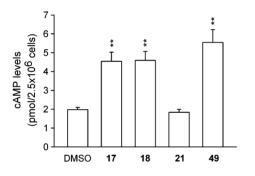

Phosphodiesterases, *e.g.* PDE3, PDE4, and PDE5, regulate intracellular cAMP and/or cGMP levels to modulate O_2^{-} generation in neutrophils. To investigate whether bioactive synthetics regulate cAMP levels by specifically inhibiting subtype phosphodiesterases, the most potent compound (**49**), and three positive controls (Ro20-1724, cilostamide, and zaprinast) were chosen to further

Scheme 3 The route for the preparation of compounds 40–54.

evaluate their inhibitory effects on PDE3, PDE4, and PDE5, respectively.^{39,40} In the present study, **49** exhibited selective activity on PDE4 (Selective Index; SI = 15.2). Interestingly, compound **49** showed minor inhibitory effects on PDE3 (Table 5), and no effect on PDE5 (the IC₅₀ value of zaprinast was 2.5 μ M).

cAMP is an important second messenger with a variety of physiological and pathophysiological manifestations. Elevation of intracellular cAMP levels is believed to suppress the activation of neutrophils.³⁶ Cellular cAMP concentrations are modulated either by synthesis *via* adenylate cyclase or by degradation *via* PDEs.

Scheme 4 The route for the preparation of compounds 56 and 58.



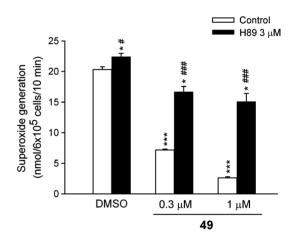

Fig. 1 Effects of compounds 2, 17, 18, 21, and 49 on cAMP levels. Human neutrophils were incubated with DMSO (control) or compounds 2, 17, 18, 21, and 49 (1.0 μ M) for 5 min before stimulation with or without FMLP (0.1 mM) for another 1 min. cAMP levels were measured by enzyme immunoassay kits. All data are expressed as the mean ± S.E.M. (*n* = 3). **p* < 0.05; ***p* < 0.01; ****p* < 0.001 compared to the control.

Table 5 Inhibitory effects of 49 on PDE3 and PDE4

	IC ₅₀ (μM) ^{<i>a</i>}		
	PDE3	PDE4	
49	64.0	4.20	
Cilostamide ^b Ro20-1724 ^b	0.0312	1.58	

^{*a*} Concentration necessary for 50% inhibition (IC₅₀). ^{*b*} Cilostamide and Ro20-1724 were used as positive controls.

The predominant cAMP-specific PDE in most inflammatory cells belongs to the PDE4 family,⁴¹ and inhibitors of PDE4 are currently being developed clinically as potential anti-inflammatory agents.⁴² Human neutrophils contain abundant amounts of PDE4, and the activity of PDE4 plays a significant function in regulating cellular cAMP level. In this study, our results demonstrate that inhibition of O_2^{--} production in human neutrophils by **49** is associated with an elevation of cellular cAMP concentration through its inhibition of PDE4. **49** was shown to be more effective at inhibiting

Fig. 2 Effects of the cAMP pathway on **49** caused inhibition of O₂⁻⁻ release. O₂⁻⁻ generation was induced by FMLP/CB and measured using SOD-inhibitable cytochrome *c* reduction. H89 (3 μ M). All data are expressed as the mean ± S.E.M. (*n* = 3). * *p* < 0.05; ** *p* < 0.01; *** *p* < 0.001 compared to the control. * *p* < 0.01; ## *p* < 0.01; ### *p* < 0.001 compared to the corresponding control.

 O_2 ⁻⁻ generation than PDE4, indicating that **49** may exhibit an additional cAMP-independent mechanism of action.

Although a few selective PDE4 inhibitors have exhibited broad spectrum anti-inflammatory effects, and reached clinical effects in asthma and COPD, the side effects of these inhibitors limit their clinical use.^{13,43} Therefore, the development of a new generation of PDE inhibitors combining PDE4 inhibition may be another way forward.⁴² The dual PDE3–PDE4 compounds, zardaverine and its related compounds, provide additive or synergistic effects to suppress the activation/function of cells playing a role in inflammatory lung diseases, and provide more bronchodilator and bronchoprotective effects in addition to the beneficial PDE4 effects.^{13,41,42} Accordingly, compound **49** showed dual inhibitory effects on PDE3 and PDE4, and no significantly cytotoxic or antiplatelet effects, suggesting that this compound may be approved as a new candidate in the treatment of airway inflammatory diseases.

4. Conclusion

In this study, we synthesized forty-six anthranilic acid derivatives and compared their inhibitory effects on O_2^{--} generation in neutrophils. The analysis of structure-activity relationships revealed that the ester chain length in the A ring, as well as an amide linker between the A and B rings, played important roles in O_2^{--} generation. Furthermore, our study demonstrated that **49** inhibited O_2^{--} generation *via* cAMP-dependent pathways. This compound could be approved as a lead for the development of new agents in the treatment of inflammatory lung diseases.

5. Experimental section

5.1. Materials and methods

All commercial chemicals and solvents are reagent grade and were used without further treatment unless otherwise noted. Reactions were detected by TLC using Merck 60 F254 silica gel aluminum packed plates; spots were recorded under ultraviolet irradiation (254 and 365 nm). The flash column chromatography was performed with silica gel (Silicycle, 70-230 mesh or 230-400 mesh). The purities of synthetics were determined by HPLC using a Jasco PU-1580 intelligent HPLC pump and a Jasco AS 1555-10 intelligent sampler with an Ascentis[®] C-18 analytical column (Superlcu, 5 μ m, 4.6 mm \times 250 mm). Detection was conducted at 248 nm in a Jassco UV-1575 UV-Vis detector. Purities of all the tested components were found to be more than 95% unless otherwise stated. The NMR spectra using CDCl₃ as solvents were obtained on a Bruker AVANCE-400 MHz FT-NMR spectrometer. Chemical shifts were internally referenced to the solvent signals in TMS. Low-resolution EI-MS were recorded on a Quattro GC-MS spectrometer having a direct inlet system, low-resolution and high-resolution ESI-MS spectra on a Bruker Daltonics APEX II 30e spectrometer.

5.1.1. General procedure synthesis of 2for benzoylaminobenzoic esters (8-18) and N-methyl 2-benzoylaminobenzoic esters (19-21). Compounds 3a-3d and 4a-4c were synthesized through refluxing 2a or 2b, respectively, in corresponding alcohols (50 ml)/c-H₂SO₄ (1.0 ml) for 2 h, the solutions were subsequently neutralized by ammonium water; the resulting mixtures were partitioned between ice water (100 ml) and chloroform; and the organic layers were concentrated. To a mixture solution of 3a-3d and 4a-4c (1.0 mmole) in DCM was added the suitable benzoyl chlorides (2.0 mmole). The reaction mixture was stirred at room temperature for 12 h. The solvent was evaporated at reduced pressure. The residue was purified by silica gel column chromatography using a mixture of *n*-hexane-ethyl acetate to afford the products.

5.1.1.1. Propyl 2-(2-fluorobenzamido)benzoate (10). 51% yield. Colorless oil. ¹H NMR (CDCl₃) δ 11.89 (1H, d, J = 6.8 Hz, NH), 8.91 (1H, d, J = 8.4 Hz, H-3), 8.07 (1H, dd, J = 8.0, 1.2 Hz, H-6'), 8.05 (1H, dd, J = 8.0, 1.2 Hz, H-6), 7.58 (1H, t, J = 8.4, 1.2 Hz, H-4), 7.48 (1H, td, J = 7.2, 1.2 Hz, H-4'), 7.27 (1H, t, J = 7.6 Hz, H-5), 7.15 (1H, dd, J = 11.6, 8.4 Hz, H-3'), 7.13 (1H, t, J = 8.0 Hz, H-5), 4.29 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₃), 1.02 (3H, t, J = 7.6 Hz, OCH₂CH₂CH₃), 162.7 (s, -CONH-), 160.6 (s, C-2', $J_{C-F} = 249$ Hz), 141.5 (s, C-2), 134.7

(d, C-4), 133.9 (d, C-4', $J_{C-F} = 9$ Hz), 132.1 (d, C-6'), 131.3 (d, C-6), 125.1 (d, C-5', $J_{C-F} = 3$ Hz), 123.4 (d, C-5), 123.2 (s, C-1', $J_{C-F} = 12$ Hz), 121.7 (d, C-3), 117.0 (d, C-3', $J_{C-F} = 23$ Hz), 116.7 (s, C-1), 67.4 (t, -COOCH₂CH₂CH₂CH₃), 22.4 (t, -COOCH₂CH₂CH₃), 10.9 (q, -COOCH₂CH₂CH₂CH₃). ESI-MS (m/z,%): 302 [M + H]⁺ (100). HRESI-MS m/z 302.1191 [M + H]⁺ (calcd for C₁₇H₁₇FNO₃ 302.1192).

5.1.1.2 Propyl 2-(2-chlorobenzamido) benzoate (11). 83% yield. Pale yellow oil. ¹H NMR (CDCl₃) δ 11.59 (1H, br. s, NH), 8.91 (1H, d, J = 8.4 Hz, H-3), 8.07 (1H, dd, J = 8.0, 1.2 Hz, H-6), 7.65 (1H, dd, J = 7.2, 2.0 Hz, H-6'), 7.57 (1H, td, J = 8.4, 1.2 Hz, H-4), 7.42 (1H, dd, J = 8.8, 1.2 Hz, H-3'), 7.34 (2H, m, H-4', 5'), 7.12 (1H, t, J = 8.0 Hz, H-5), 4.22 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₃), 1.74 (2H, qt, J = 7.2, 6.8 Hz, OCH₂CH₂CH₃), 1.74 (2H, qt, J = 7.2, 6.8 Hz, OCH₂CH₂CH₃), 0.98 (3H, t, J = 7.2 Hz, OCH₂CH₂CH₃). ¹³C NMR (CDCl₃) δ 168.5 (s, -COOCH₂CH₂CH₃), 165.8 (s, -CONH-), 141.6 (s, C-2), 136.6 (s, C-1'), 135.0 (d, C-4), 131.8 (d, C-6), 131.6 (s, C-2'), 131.3 (d, C-4'), 131.0 (d, C-3'), 129.6 (d, C-6'), 127.5 (d, C-5'), 123.5 (d, C-5), 120.9 (d, C-3), 116.1 (s, C-1), 67.4 (t, -COOCH₂CH₂CH₃), 22.3 (t, -COOCH₂CH₂CH₃), 10.9 (q, -COOCH₂CH₂CH₃). ESI-MS (m/z,%): 318[M + H]⁺, 320 [M + 2 + H]⁺. HRESI-MS m/z 318.0899 [M + H]⁺ (calcd for C₁₇H₁₇CINO₃ 318.0897).

5.1.1.3. Propyl 2-(2-bromobenzamido)benzoate (12). 63% yield. Brown oil. ¹H NMR (CDCl₃) δ 11.53 (1H, br. s, NH), 8.91 (1H, d, J = 8.4 Hz, H-3), 8.07 (1H, d, J = 8.0 Hz, H-6), 7.59 (3H, m, H-4, 3', 6'), 7.37 (1H, t, J = 7.6 Hz, H-5'), 7.27 (1H, t, J = 7.6 Hz, H-4'), 7.12 (1H, t, J = 7.6 Hz, H-5), 4.22 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₃), 1.74 (2H, qt, J = 7.6, 6.8 Hz, OCH₂CH₂CH₃), 0.98 (3H, t, J = 7.6 Hz, OCH₂CH₂CH₃). ¹³C NMR (CDCl₃) δ 168.5 (s, -COOCH₂CH₂CH₃), 166.6 (s, -CONH-), 141.6 (s, C-2), 138.8 (s, C-1'), 135.0 (d, C-4), 134.1 (d, C-3'), 131.9 (d, C-6), 131.3 (d, C-4'), 129.3 (d, C-6'), 128.1 (d, C-5'), 123.5 (d, C-5), 120.9 (d, C-3), 120.1 (s, C-2'), 116.1 (s, C-1), 67.4 (t, -COOCH₂CH₂CH₃), 22.3 (t, -COOCH₂CH₂CH₃), 10.9 (q, -COOCH₂CH₂CH₃). ESI-MS (m/z,%): 362 [M + H]⁺, 364 [M + 2 + H]⁺. HRESI-MS m/z 362.0393 [M + H]⁺ (calcd for C₁₇H₁₇BrNO₃ 362.0392).

5.1.1.4. Butyl 2-(2-fluorobenzamido)benzoate (**13**). 48% yield. Colorless oil. ¹H NMR (CDCl₃) δ 11.90 (1H, br. s, NH), 8.91 (1H, d, J = 8.8 Hz, H-3), 8.06 (2H, m, H-6, 6'), 7.57 (1H, td, J = 8.8, 1.6 Hz, H-4), 7.47 (1H, ddd, J = 11.6, 8.0, 2.0 Hz, H-4'), 7.26 (1H, t, J = 8.0 Hz, H-5'), 7.18 (1H, dd, J = 11.6, 8.0 Hz, H-3'), 7.12 (1H, t, J = 7.6 Hz, H-5), 4.33 (2H, t, J = 6.4 Hz, $OCH_2CH_2CH_2CH_3$), 1.74 (2H, tt, J =7.2, 6.4 Hz, $OCH_2CH_2CH_2CH_3$), 1.46 (2H, qt, J = 7.6, 7.2 Hz, $OCH_2CH_2CH_2CH_3$), 0.96 (3H, t, J = 7.6 Hz, $OCH_2CH_2CH_2CH_3$). ¹³C NMR (CDCl₃) δ 168.3 (s, -<u>C</u>OOCH₂CH₂CH₂CH₃), 162.6 (s, $J_{C-F} = 3$ Hz, -CONH-), 160.6 (s, $J_{C-F} = 250$ Hz, C-2'), 141.5 (s, C-2), 134.7 (d, C-4), 133.8 (d, $J_{C-F} = 9$ Hz, C-4'), 132.0 (d, $J_{C-F} = 9$ 2 Hz, C-6'), 131.2 (d, C-6), 125.0 (d, $J_{C-F} = 4$ Hz, C-5'), 123.4 (d, C-5), 123.2 (s, $J_{C-F} = 12$ Hz, C-1'), 121.8 (d,C-3), 116.8 (d, $J_{C-F} =$ 23 Hz, C-3'), 116.7 (s, C-1), 65.6 (t, -COOCH₂CH₂CH₂CH₃), 31.0 $(t, -COOCH_2CH_2CH_2CH_3), 19.6 (t, -COOCH_2CH_2CH_2CH_3),$ 14.1 (q, -COOCH₂CH₂CH₂CH₂CH₃). ESI-MS (m/z,%): 316 [M + H]⁺. HRESI-MS m/z 316.1348 [M + H]⁺ (calcd for C₁₈H₁₉FNO₃ 316.1349).

5.1.1.5. Butyl 2-(2-chlorobenzamido)benzoate (14). 55% yield. Colorless oil. ¹H NMR (CDCl₃) δ 11.58 (1H, br. s, NH), 8.91 (1H, d, J = 8.4 Hz, H-3), 8.06 (1H, dd, J = 8.0, 1.2 Hz, H-6),

7.65 (1H, dd, J = 7.2, 2.0 Hz, H-6'), 7.58 (1H, td, J = 8.4, 1.2 Hz, H-4), 7.44 (1H, dd, J = 7.6, 1.2 Hz, H-3'), 7.38 (1H, td, J = 7.6, 1.2 Hz, H-5'), 7.37 (1H, td, J = 7.6, 2.0 Hz, H-4'), 7.12 (1H, t, J = 8.0 Hz, H-5), 4.28 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₂CH₂CH₃), 1.71 (2H, tt, J = 7.2, 6.8 Hz, OCH₂CH₂CH₂CH₃), 1.43 (2H, qt, J = 7.6, 7.2 Hz, OCH₂CH₂CH₂CH₃), 0.94 (3H, q, J =7.6 Hz, OCH₂CH₂CH₂CH₃), ¹³C NMR (CDCl₃) δ 168.5 (s, -COOCH₂CH₂CH₂CH₃), 165.8 (s, -CONH-), 141.6 (s, C-2), 136.7 (s, C-1'), 135.0 (d, C-4), 131.8 (s, C-2'), 131.7 (d, C-6), 131.3 (d, C-4'), 131.0 (d, C-3'), 129.6 (d, C-6'), 127.5 (d, C-5'), 123.5 (d, C-5), 121.0 (d, C-3), 116.2 (s, C-1), 65.7 (t, -COOCH₂CH₂CH₂CH₃), 30.9 (t, -COOCH₂CH₂CH₂CH₃), 19.6 (t, -COOCH₂CH₂CH₂CH₃), 14.1 (q, -COOCH₂CH₂CH₂CH₃), 19.6 (t, -COOCH₂CH₂CH₂CH₃), 14.1 (q, +2 H]⁺. HRESI-MS m/z 332.1052 [M + H]⁺ (calcd for C₁₈H₁₉CINO₃ 332.1053).

5.1.1.6. Butyl 2-(2-bromobenzamido)benzoate (15). 60% vield. Pale vellow oil. ¹H NMR (CDCl₃) δ 11.50 (1H, br. s, NH), 8.90 (1H, d, J = 8.0 Hz, H-3), 8.07 (1H, dd, J = 8.0, 2.0 Hz, H-6), 7.60 (3H, m, H-4, 3', 6'), 7.38 (1H, td, J = 8.0, 0.8 Hz, H-5'), 7.28 (1H, td, J = 8.0, 2.0 Hz, H-4'), 7.13 (1H, t, J = 8.0 Hz, H-5), 4.27 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₂CH₃), 1.71 (2H, tt, J = 7.6, 6.8 Hz, OCH₂CH₂CH₂CH₂CH₃), 1.43 (2H, qt, J = 7.6, 7.2 Hz, $OCH_2CH_2CH_2CH_3$, 0.94 (3H, t, J = 7.2 Hz, $OCH_2CH_2CH_2CH_3$). ¹³C NMR (CDCl₃) δ 168.4 (s, -COOCH₂CH₂CH₂CH₃), 166.5 (s, -CONH-), 141.4 (s, C-2), 138.7 (s, C-1'), 134.9 (d, C-4), 134.0 (d, C-3'), 131.7 (d, C-6), 131.2 (d, C-4'), 129.2 (d, C-6'), 127.9 (d, C-5'), 123.4 (d, C-5), 120.8 (d, C-3), 120.0 (s, C-2'), 116.0 (s, C-1), 65.6 (t, -COOCH2CH2CH2CH3), 30.8 (t, -COOCH2CH2CH2CH3), 19.5 $(t, -COOCH_2CH_2CH_2CH_3), 14.0 (q, -COOCH_2CH_2CH_2CH_3).$ ESI-MS (m/z,%): 376 $[M + H]^+$, 378 $[M + 2 + H]^+$. HRESI-MS m/z 376.0548 [M + H]⁺ (calcd for C₁₈H₁₉BrNO₃ 376.0547).

5.1.1.7. Propyl 2-(2,6-difluorobenzamido) benzoate (18). 32% yield. Colorless oil. ¹H NMR (CDCl₃) δ 11.64 (1H, br. s, NH), 8.90 (1H, d, J = 8.0 Hz, H-3), 8.08 (1H, dd, J = 7.6, 1.6 Hz, H-6), 7.60 (1H, td, J = 8.0, 1.2 Hz, H-4), 7.39 (1H, tt, J = 12.4, 8.0 Hz, H-4'), 7.15 (1H, t, J = 7.6 Hz, H-5), 6.99 (2H, t, J = 8.0 Hz, H-3', 5'), 4.25 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₃), 2.77 (2H, qt, J = 7.2, 6.8 Hz, OCH₂CH₂CH₃), 1.00 (3H, t, J = 7.2 Hz, OCH₂CH₂CH₃), 1¹³C NMR (CDCl₃) δ 168.5 (s, -COOCH₂CH₂CH₃), 161.6 (s, -CONH-), 159.1 (s, $J_{C-F} = 252$, 7 Hz, C-2', 5'), 141.3 (s, C-2), 135.0 (d, C-4), 132.7 (d, $J_{C-F} = 10$ Hz, C-4'), 131.3 (d, C-6), 123.7 (d, C-5), 121.0 (d, C-3), 116.1 (s, C-1), 115.5 (s, $J_{C-F} = 20$ Hz, C-1'), 112.5 (d, $J_{C-F} = 25$ Hz, C-3', 5'), 67.4 (t, -COOCH₂CH₂CH₃), ESI-MS (m/z,%): 320 [M + H]⁺. HRESI-MS m/z 320.1099 [M + H]⁺ (calcd for C₁₇H₁₆F₂NO₃ 320.1098).

5.1.1.8. Methyl 2-(2,6-diffuoro-N-methylbenzamido) benzoate (19). 55% yield. Colorless oil. ¹H NMR (CDCl₃) δ 7.78 (1H, dd, *J* = 8.0, 1.2 Hz, H-6), 7.45 (1H, td, *J* = 8.0, 1.2 Hz, H-4), 7.36 (1H, d, *J* = 8.0 Hz, H-3), 7.27 (1H, td, *J* = 8.0, 1.2 Hz, H-5), 7.08 (1H, tt, *J* = 8.0, 6.8 Hz, H-4'), 6.63 (2H, m, H-3', 5'), 3.90 (3H, OCH₃), 3.89 (3H, NCH₃). ¹³C NMR (CDCl₃) δ 166.3 (s, -<u>C</u>OOCH₃), 165.8 (s, -<u>C</u>ONCH₃), 158.7(s, *J*_{C-F} = 250 Hz, C-2', 6'), 142.1 (s, C-2), 133.4 (d, C-4), 131.9 (d, C-6), 131.4 (d, *J*_{C-F} = 10 Hz, C-4'), 129.9 (d, C-5), 29.1 (s, C-1), 129.0 (d, C-3), 125.0 (s, *J*_{C-F} = 22 Hz, C-1'), 111.6 (d, *J*_{C-F} = 22 Hz, C-3', 5'), 52.8 (q, -COO<u>C</u>H₃), 37.7 (q, -CON<u>C</u>H₃). ESI-MS (*m*/*z*,%): 306 [M + H]⁺. HRESI-MS *m*/*z* 306.0941 [M + H]⁺ (calcd for C₁₆H₁₄F₂NO₃ 306.0942). 5.1.1.9. Ethyl 2-(2-fluoro-N-methylbenzamido)benzoate (20). 48% yield. White powder, mp 84–86 °C. ¹H NMR (CDCl₃) δ 7.81 (1H, d, *J* = 7.6 Hz, H-6), 7.45 (1H, t, *J* = 7.6 Hz, H-4, 7.36 (1H, d, *J* = 7.6 Hz, H-3), 7.29 (1H, t, *J* = 7.6 Hz, H-5), 7.10 (1H, tt, *J* = 8.0, 7.6 Hz, H-4'), 6.65 (2H, m, H-3', 5'), 4.87 (2H, q, *J* = 6.8 Hz, OCH₂CH₃), 3.48 (3H, s, NCH₃), 1.40 (3H, t, *J* = 6.8 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ 165.6 (s, -COOCH₂CH₃), 161.5 (s, -CONCH₃), 142.2 (s, C-2), 133.7 (d, C-4), 133.2 (d, C-6), 131.3 (d, *J*_{CF} = 10 Hz C-4'), 129.9 (d, C-5), 129.7 (s, C-1), 128.9 (d, C-3), 115.2 (s, *J*_{CF} = 23 Hz, C-1'), 111.6 (d, *J*_{C-F} = 21 Hz, C-3', 5'), 62.1 (t, -COOCH₂CH₃), 37.9 (q, -CONCH₃), 14.5 (q, -COOCH₂CH₃). ESI-MS (*m*/*z*,%): 320 [M + H]⁺. HRESI-MS *m*/*z* 320.1097 [M + H]⁺ (calcd for C₁₇H₁₆F₂NO₃ 320.1098).

5.1.1.10. Propyl 2-(2,6-difluoro-N-methylbenzamido)benzoate (21). 52% yield. White powder, mp 72–74 °C. ¹H NMR (CDCl₃) δ 7.82 (1H, dd, J = 8.0, 1.2 Hz, H-6), 7.45 (1H, td, J = 7.6, 1.2 Hz, H-4), 7.36 (1H, d, J = 7.6 Hz, H-3), 7.29 (1H, t, J = 8.0 Hz, H-5), 7.09 (1H, tt, J = 8.4, 7.6 Hz, H-4'), 6.64 (2H, m, H-3', 5'), 4.30 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₃), 3.52 (3H, s, NCH₃), 1.82 (2H, qt, J = 7.2, 6.8 Hz, OCH₂CH₂CH₃), 1.02 (3H, t, J = 7.2 Hz, OCH₂CH₂CH₃), 161.6 (s, -<u>C</u>ONCH₃), 158.9 (s, $J_{C-F} = 250$ Hz, C-2', 6'), 142.0 (s, C-2), 133.2 (d, C-4), 131.9 (d, C-6), 131.5 (d, $J_{C-F} = 10$ Hz, C-4'), 129.8 (d, C-5), 129.5 (s, C-1), 129.0 (d, C-3), 115.0 (d, $J_{C-F} = 23$ Hz, C-1'), 111.7 (d, $J_{C-F} = 21$ Hz, C-3', 5'), 67.7 (t, -COOCH₂CH₂CH₃), 37.8 (q, -CON<u>C</u>H₃), 22.15 (t, -COOCH₂<u>C</u>H₂CH₃), 10.77 (q, -COOCH₂<u>C</u>H₂<u>C</u>H₃). ESI-MS (m/z,%): 334 [M + H]⁺. HRESI-MS m/z 334.1257 [M + H]⁺ (calcd for C₁₈H₁₈F₂NO₃ 334.1255).

5.1.1.11. Ethyl 2-(2-fluorobenzamido)nicotinate (22). Compound 22 was synthesized in 45% yield from 4-amino-nicotinic acid (2c) in similar procedure as described. Pale yellow powder, mp 72–74 °C. ¹H NMR (CDCl₃) δ 11.55 (1H, d, J = 8.4 Hz, NH), 8.69 (1H, dd, J = 4.8, 1.6 Hz, H-6), 8.36 (1H, dd, J = 7.6, 1.6 Hz, H-4), 8.12 (1H, dd, J = 7.6, 1.2 Hz, H-6'), 7.52 (1H, ddd, J = 10.2, 7.6, 1.2 Hz, H-4'), 7.28 (1H, t, J = 7.6 Hz, H-5'), 7.19 (1H, dd, *J* = 10.2, 8.4 Hz, H-3 ′), 7.15 (1H, dd, *J* = 7.6, 4.8 Hz, H-5), 4.41 (2H, q, J = 6.8 Hz, CH₂CH₃), 1.39 (3H, t, J = 6.8 Hz, CH₂CH₃). ¹³C NMR (CDCl₃) δ 166.7 (s, -COOCH₂CH₃), 161.6 (s, -CONH-), 160.1 (s, *J*_{C-F} = 249 Hz, C-2'), 153.1 (d, C-6), 152.4 (s, C-2), 140.2 $(d, C-4), 134.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 132.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 135.5 (d, C-5'), 125.1 (d, J_{C-F} = 9 Hz, C-4'), 125.5 (d, C-5'), 125.5 (d, C-5')$ 3 Hz, C-6'), 122.7 (s, J_{C-F} = 12 Hz, C-1'), 119.3 (d, C-5), 116.6 (d, $J_{C-F} = 24$ Hz, C-3'), 113.5 (s, C-3), 62.3 (t, -COO<u>C</u>H₂CH₃), 14.4 (q, -COOCH₂<u>C</u>H₃). ESI-MS (*m*/*z*,%): 289 [M + H]⁺. HRESI-MS m/z 289.0986 [M + Na]⁺ (calcd for C₁₅H₁₄FN₂O₃ 289.0986).

5.1.1.12. Ethyl 4-(2-fluorobenzamido)nicotinate (23). Compound 23 was synthesized in 49% yield from 2-aminonicotinic acid (2d) in a procedure similar to 22. White powder, mp 74–76 °C. ¹H NMR (CDCl₃) δ 12.00 (1H, d, J = 8.0 Hz, NH), 9.21 (1H, s, H-2), 8.81 (1H, d, J = 6.0 Hz, H-6), 8.66 (1H, d, J = 6.0 Hz, H-5), 8.07 (1H, td, J = 8.4, 1.6 Hz, H-6'), 7.54 (1H, ddd, J = 13.2, 8.4, 1.6 Hz, H-4'), 7.30 (1H, t, J = 8.4 Hz, H-5'), 7.22 (1H, dd, J = 11.2, 8.4 Hz, H-3'), 4.46 (2H, q, J = 6.8 Hz, OCH₂CH₃), 1.44 (3H, t, J = 6.8 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ 167.5 (s, -<u>C</u>OOCH₂CH₃), 163.2 (s, -CONH-),160.2 (s, $J_{C-F} = 250$ Hz, C-2'), 155.0 (d, C-2), 152.9 (d, C-6), 147.7 (s, C-4), 134.6 (d, $J_{C-F} = 9$ Hz, C-6'), 132.3 (d, C-5'), 125.4 (d, $J_{C-F} = 3$ Hz, C-4'), 122.1 (d, $J_{C-F} = 12$ Hz, C-3'), 116.9 (s, $J_{C-F} = 23$ Hz, C-1'), 114.7 (d, C-5), 112.0 (s, C-3), 62.2 (t, -COOCH₂CH₃), 14.5 (q, -COOCH₂CH₃). ESI-MS

Downloaded by Universitaire d'Angers on 12 February 2012 Published on 01 July 2011 on http://pubs.rsc.org | doi:10.1039/C10B05714F (m/z, %): 289 [M + H]⁺. HRESI-MS m/z 289.0989 [M + H]⁺ (calcd for C₁₅H₁₄FN₂O₃ 289.0988).

5.1.1.13. Ethyl 2-(2-chlorobenzamido)nicotinate (24). Compound 24 was synthesized in 58% yield from 2-aminonicotinic acid (2d) in a procedure similar to 8. Pale yellow powder, mp 108-110 °C. ¹H NMR (CDCl₃) δ 11.25 (1H, br. s, NH), 8.63 (1H, dd, J = 4.8, 1.6 Hz, H-6), 8.35 (1H, dd, J = 8.0, 2.0 Hz, H-4), 7.67 (1H, dd, J = 8.0, 2.0 Hz, H-3'), 7.43 (1H, td, J = 8.0, 2.0 Hz)H-5 '), 7.38 (1H, dd, J = 8.0, 2.0 Hz, H-6 '), 7.35 (1H, td, J = 8.0, 2.0 Hz, H-4 '), 7.13 (1H, dd, J = 8.0, 4.8 Hz, H-5), 4.33 (1H, q, J = 6.8 Hz, OCH₂CH₃), 1.38 (1H, t, J = 6.8 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ 166.3 (s, -<u>C</u>OOCH₂CH₃), 164.3 (s, -CONH-), 152.7 (d, C-6), 151.8 (s, C-2), 139.6 (s, C-1'), 135.9 (d, C-4), 131.2 (s, C-2'), 130.7 (d, C-4'), 130.1 (d, C-3'), 129.2 (d, C-6'), 126.8 (d, C-5'), 118.6 (d, C-5), 112.1 (s, C-3), 61.8 (t, -COOCH₂CH₃), 13.8 $(q, -COOCH_2CH_3)$. ESI-MS (m/z, %): 305 $[M + H]^+$, 307 [M + 2 +H]⁺. HRESI-MS m/z 305.0691 [M + H]⁺ (calcd for C₁₅H₁₄ClN₂O₃ 305.0693).

5.1.1.14. Ethyl 2-(2-bromobenzamido)nicotinate (25). Compound 25 was synthesized in 62% yield from 2-aminonicotinic acid (3d) in a procedure similar to 9. Pale yellow powder, mp 98–100 °C. ¹H NMR (CDCl₃) δ 11.21 (1H, br. s, NH), 8.61 (1H, dd, J = 4.8, 2.0 Hz, H-6), 8.34 (1H, dd, J = 8.0, 2.0 Hz, H-4), 7.61 (2H, dd, J = 8.0, 0.8 Hz, H-3', 6'), 7.39 (1H, td, J = 8.0, 0.8 Hz, H-5'), 7.30 (1H, td, J = 8.0, 0.8 Hz, H-4'), 7.13 (1H, dd, J = 8.0, 4.8 Hz, H-5), 4.37 (2H, q, J = 6.4 Hz, OCH₂CH₃), 1.37 (3H, t, J = 6.4 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ 166.9 (s, -COOCH₂CH₃), 165.7 (s, -CONH-), 153.2 (d, C-6), 152.3 (s, C-2), 140.3 (d, C-4), 138.7 (s, C-1'), 133.9 (d, C-3'), 131.8 (d, C-4'), 129.4 (d, C-6'), 128.0 (d, C-5'), 119.7 (d, C-5), 119.3 (s, C-2'), 112.8 (s, C-3), 62.4 (t, -COOCH₂CH₃), 14.48 (q, -COOCH₂CH₃). ESI-MS (m/z,%): 349 [M + H]⁺, 357 [M + 2 + H]⁺. HRESI-MS m/z 349.0185 [M + H]⁺ (calcd for C₁₅H₁₄BrN₂O₃ 349.0188).

3-(2-fluorobenzamido)pyrazine-2-carbo-5.1.1.15. Methyl xylate (26). Compound 26 was synthesized in 14% yield from 3-aminopyrazine-2-carboxylic acid (3e) in a procedure similar to described. White powder, mp 123–125 °C. ¹H NMR (CDCl₃) δ 11.58 (1H, d, J = 9.6 Hz, NH), 8.70 (1H, d, J = 2.0 Hz, H-6), 8.47 (1H, d, J = 2.0 Hz, H-5), 8.16 (1H, t, J = 7.6 Hz, H-6'), 7.57 (1H, ddd, J = 7.6, 5.2, 2.0 Hz, H-4'), 7.33 (1H, t, J = 7.6 Hz)H-5'), 7.23 (1H, dd, J = 11.6, 7.6 Hz, H-3'), 4.08 (3H, s, OCH₃). ¹³C NMR (CDCl₃) δ 166.5 (s, -<u>C</u>OOCH₃), 161.6 (s, -CONH-), 159.6 (s, *J*_{C-F} = 248 Hz, C-2'), 149.8 (s, C-3), 147.0 (d, C-6), 139.2 (d, C-5), 134.8 (d, $J_{C-F} = 9$ Hz, C-6'), 132.8 (d, C-5'), 130.4 (s, C-2), 125.4 (d, C-4'), 121.8 (d, $J_{C-F} = 11$ Hz, C-3'), 116.8 (s, $J_{C-F} = 11$ Hz, C-3') 23 Hz, C-1'), 54.0 (q, -COOCH₃). ESI-MS (m/z,%): 276 [M + H]⁺. HRESI-MS m/z 276.0786 [M + H]⁺ (calcd for C₁₃H₁₁FN₃O₃ 276.0784).

5.1.2 General procedure for synthesis of 2-phenylsulfonamidobenzoic esters (29–37). Compounds 3a-3c were synthesized in a procedure similar to described. To a mixture solution of 3a-3c (1.0 mmole) in DCM (20.0 ml) was added the corresponding benzenesulfonyl chloride (28a-28c, 1.5 mmole). The reaction mixture was stirred at room temperature for 12 h. The solvent was evaporated at reduced pressure. The residue was purified by silica gel column chromatography using a mixture of *n*-hexane-acetone to afford the products. 5.1.2.1. Ethyl 2-(2-bromophenylsulfonamido)benzoate (34). 23% yield. Pale yellow powder, mp 88–90 °C. ¹H NMR (CDCl₃) δ 11.33 (1H, br. s, NH), 8.26 (1H, dd, J = 7.6, 1.2 Hz, H-3), 7.96 (1H, dd, J = 8.0, 1.6 Hz, H-6), 7.63 (1H, d, J = 8.4 Hz, H-3'), 7.49 (1H, d, J = 8.4 Hz, H-6'), 7.44 (1H, td, J = 7.2, 1.2 Hz, H-4), 7.35 (2H, m, H-4', 5'), 6.97 (1H, t, J = 7.6 Hz, H-5), 4.38 (2H, q, J = 7.2 Hz, OCH₂CH₃), 1.39 (3H, t, J = 7.2 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ 168.2 (s, <u>-COOCH₂CH₃), 140.2 (s, C-2), 138.8 (s, C-1'), 135.9 (d, C-4), 134.7 (d, C-3'), 134.5 (d, C-4'), 132.7 (d, C-6), 131.8 (d, C-6'), 128.0 (d, C-5'), 122.7 (s, C-1), 120.7 (s, C-2'), 117.2 (d, C-5), 115.9 (d, C-3), 62.1 (t, <u>-COOCH₂CH₃), 14.6 (q, <u>-COOCH₂CH₃). ESI-MS (m/z,%): 406 [M + Na]⁺, 408 [M + 2 + Na]⁺. HRESI-MS m/z 405.9725 [M + Na]⁺ (calcd for C₁₅H₁₄BrNO₄SNa 405.9728).</u></u></u>

5.1.2.2. Propyl 2-(2-fluorophenylsulfonamido)benzoate (35). 29% yield. Pale yellow powder, mp 79-81 °C. ¹H NMR (CDCl₃) δ 11.13 (1H, br. s, NH), 7.98 (2H, m, H-6, 6'), 7.63 (1H, d, J = 8.4 Hz, H-3), 7.54 (1H, m, H-4'), 7.40 (1H, td, J = 8.4, 1.2 Hz, H-4), 7.27 (1H, t, J = 7.6 Hz, H-5'), 7.11 (1H, t, J = 9.6 Hz, H-3'), 7.03 (1H, t, J = 7.6 Hz, H-5), 4.30 (2H, t, J = 6.8 Hz, $OCH_2CH_2CH_3$), 1.79 (2H, qt, J = 7.2, 6.8 Hz, $OCH_2CH_2CH_3$), 1.02 (3H, t, J = 7.2 Hz, OCH₂CH₂CH₃). ¹³C NMR (CDCl₃) δ 168.2 (s, -COOCH₂CH₂CH₃), 159.3 (s, C-2', $J_{C-F} = 255$ Hz), 140.3 (s, C-2), 136.1 (d, C-4', $J_{C-F} = 9$ Hz), 134.8 (d, C-4), 131.7 (d, C-6'), 131.3 (d, C-6), 127.5 (s, C-1', $J_{C-F} = 14$ Hz), 124.8 (d, C-5', $J_{C-F} = 4$ Hz), 123.2 (d, C-5), 118.1 (d, C-3), 117.6 (d, C-3', $J_{C-F} = 21$ Hz), 116.2 (s, C-1), 67.7 (t, -COO<u>C</u>H₂CH₂CH₃), 22.3 (t, -COOCH₂CH₂CH₃), 10.9(q, t, -COOCH₂CH₂CH₃). ESI-MS (m/z,%): 360 [M + Na]⁺. HRESI-MS m/z 360.0682 [M + Na]⁺ (calcd for $C_{16}H_{16}FNO_4SNa 360.0684$).

5.1.2.3. Propyl 2-(2-chlorophenylsulfonamido)benzoate (**36**). 39% yield. Yellow powder, mp 83–85 °C. ¹H NMR (CDCl₃) δ 11.33 (1H, br. s, NH), 8.22 (1H, dd, J = 7.6, 1.6 Hz, H-3), 7.98 (1H, dd, J = 8.0, 1.6 Hz, H-6), 7.54 (1H, d, J = 8.4 Hz, H-6'), 7.41 (4H, m, H-4, 3', 4', 5'), 7.00 (1H, t, J = 8.0 Hz, H-5), 4.30 (2H, t, J = 6.8 Hz OCH₂CH₂CH₃), 1.80 (2H, qt, J = 7.2, 6.8 Hz, OCH₂CH₃CH₃), 1.03 (3H, t, J = 7.2 Hz OCH₂CH₂CH₃). ¹³C NMR (CDCl₃) δ 168.2 (s, -COOCH₂CH₂CH₃), 140.23 (s, C-2), 136.9 (s, C-1'), 134.8 (d, C-2'), 134.7 (d, C-6), 132.5 (d, C-4'), 134.4 (d, C-3'), 132.4 (d, C-4), 131.8 (d, C-6'), 127.4 (d, C-5'), 122.9 (d, C-5), 117.2 (d, C-3), 115.8 (s, C-1), 67.6 (d, -COOCH₂CH₂CH₃), 22.3 (d, -COOCH₂CH₂CH₃), 10.9 (q, -COOCH₂CH₂CH₃). ESI-MS (m/z,%): 376 [M + Na]⁺, 378 [M + 2 + Na]⁺. HRESI-MS m/z376.0386 [M + Na]⁺ (calcd for C₁₆H₁₆ClNO₄S Na 376.0384).

5.1.2.4. Propyl 2-(2-bromophenylsulfonamido)benzoate (**37**). 21% yield. Yellow powder, mp 101–103 °C. ¹H NMR (CDCl₃) δ 11.37 (1H, br. s, NH), 8.28 (1H, dd, J = 8.0, 1.6 Hz, H-3), 7.79 (1H, dd, J = 8.0, 1.2 Hz, H-6), 7.64 (1H, d, J = 7.2 Hz, H-3'), 7.51 (1H, d, J = 8.8 Hz, H-6'), 7.46 (1H, t, J = 7.2 Hz, H-4), 7.36 (1H, t, J = 7.2 Hz, H-4', 5'), 6.99 (1H, t, J = 7.2 Hz, H-4), 7.36 (1H, t, J = 6.8 Hz, OCH₂CH₂CH₃), 1.80 (2H, qt, J = 7.2, 6.8 Hz, OCH₂CH₂CH₃), 1.08 (3H, t, J = 7.2 Hz, OCH₂CH₂CH₃). ¹³C NMR (CDCl₃) δ 168.2 (s, -CO), 140.2 (s, C-2), 138.7 (s, C-1'), 135.9 (d, C-4), 134.8 (d, C-3'), 134.6 (d, C-4), 132.7 (d, C-6), 131.8 (d, C-6'), 128.0 (d, C-5'), 122.7 (s, C-1), 120.7 (s, C-2'), 117.1 (d, C-5), 115.8 (d, C-3), 67.6 (t, -COOCH₂CH₂CH₃), 22.4 (t, -COOCH₂CH₂CH₃), 10.9 (q, -COOCH₂CH₂CH₃). ESI-MS (m/z,%): 420 [M + Na]⁺, 422 [M + 2 + Na]⁺. HRESI-MS m/z419.9880 [M + Na]⁺ (calcd for C₁₆H₁₆BrNO₃SNa 419.9880). 5.1.3. General procedure for synthesis of 2-phenylacetamidobenzoic esters (40–51) and 3-phenylpropanamidobenzoic esters (52–54). Compounds 3a–3d were synthesized in a procedure similar to described. To a solution of 3a–3d (1.0 mmole) with the corresponding phenylacetic acids (38a–38c) or phenylpropionic acids (39a–39c) (each 1.5 mmole) in CH_2Cl_2 (20 mL), respectively, were added successively coupling agents HBTU (1.5 mmol) and DIEA (3.0 mmol). The reaction mixture was stirred at room temperature for 24 h. The solvent was evaporated at reduced pressure. The residue was purified by silica gel column chromatography using a mixture of *n*-hexane–acetone to afford the products.

5.1.3.1. Methyl 2-(2-(2-bromophenyl)acetamido)benzoate (42). 24% yield. Pale yellow powder, Mp: 88–90 °C. ¹H NMR (CDCl₃) δ 11.03 (1H, br. s, NH), 8.73 (1H, d, J = 8.4 Hz, H-3), 7.98 (1H, dd, J = 8.0, 1.2 Hz, H-6), 7.61 (1H, d, J = 8.0 Hz, H-6'), 7.51 (1H, td, J = 8.4, 1.2 Hz, H-4), 7.43 (1H, dd, J = 7.2, 1.2 Hz, H-5'), 7.35 (1H, t, J = 7.2 Hz, H-4'), 7.19 (1H, td, J = 8.0, 1.2 Hz, H-3'), 7.06 (1H, t, J = 8.0 Hz, H-5), 3.94 (2H, s, Ar-C<u>H</u>₂-NCO), 3.84 (3H, s, OC<u>H</u>₃). ¹³C NMR (CDCl₃) δ 169.1 (s, -<u>C</u>OOCH₃), 168.7(s, -CONH-), 141.6(s, C-2), 134.9(s, C-1'), 134.7 (d, C-4), 133.5 (d, C-3'), 131.2 (d, C-4'), 129.5 (d, C-6'), 128.3 (d, C-5'), 125.8 (d, C-5), 123.1 (d, C-3), 120.9 (s, C-2'), 115.7 (s, C-1), 52.6 (q, -COO<u>C</u>H₃), 46.12 (t, <u>C</u>H₂). ESI-MS (m/z,%): 370 [M + Na]⁺, 372 [M + 2 + Na]⁺. HRESI-MS m/z 370.0055 [M + Na]⁺ (calcd for C₁₆H₁₄BrNO₃Na 370.0057).

5.1.3.2. Ethyl 2-(2-(2-fluorophenyl)acetamido)benzoate (43). 25% yield. Yellow oil. ¹H NMR (CDCl₃) δ 11.18 (1H, br. s, NH), 8.71 (1H, d, J = 8.0 Hz, H-3), 8.01 (1H, dd, J = 8.0, 1.6 Hz, H-6), 7.51 (1H, td, J = 8.0, 1.6 Hz, H-6'), 7.39 (1H, dd, J = 8.0, 1.6 Hz, H-4), 7.29 (1H, m, H-4'), 7.15 (1H, t, J = 8.0 Hz, H-5'), 7.10 (1H, t, J = 9.6 Hz, H-3'), 7.06 (1H, t, J = 8.0 Hz, H-5), 4.36 $(2H, q, J = 7.2 \text{ Hz}, \text{OCH}_2\text{CH}_3), 3.84 (2H, s, \text{Ar-CH}_2\text{-NCO}), 1.40$ (3H, t, J = 7.2 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ 169.3 (s, -COOCH₂CH₃), 168.4 (s, -CONH-), 162.8 (s, C-2', $J_{C-F} = 245$ Hz), 141.78 (s, C-2), 134.8 (d, C-4), 132.2 (d, C-4', J_{C-F} = 4 Hz), 131.1 (d, C-6), 129.7 (d, C-6', $J_{C-F} = 8$ Hz), 124,8 (d, C-5', $J_{C-F} = 4$ Hz), 123.0 (d, C-5), 122.1 (s, C-1', $J_{C-F} = 16$ Hz), 120.8 (d, C-3), 116.0 (s, C-1), 115.9 (d, C-3', J_{C-F} = 4 Hz), 61.7 (t, -COOCH₂CH₃), 39.1 (t, CH₂, J = 3 Hz), 14.6 (q, -COOCH₂CH₃). ESI-MS (m/z,%): $324 [M + Na]^+$. HRESI-MS m/z $324.1012 [M + Na]^+$ (calcd for C₁₇H₁₆FNO₃Na 324.1010).

5.1.3.3. Ethyl 2-(2-(2-chlorophenyl)acetamido)benzoate (44). 22% yield. pale yellow powder, mp 59–61 °C. ¹H NMR (CDCl₃) δ 11.12 (1H, br. s, NH), 8.72 (1H, d, J = 8.0 Hz, H-3), 8.03 (1H, dd, J = 8.0, 1.2 Hz, H-6), 7.51 (1H, td, J = 8.0 Hz, H-4), 7.42 (2H, m, H-3', 6'), 7.28 (2H, m, H-4', 5'), 7.07 (1H, t, J = 8.0 Hz, H-5), 4.31 (2H, q, J = 6.8 Hz, OCH₂CH₃), 3.92 (2H, s, Ar-CH₂-NCO), 1.37 (3H, t, J = 6.8 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ 169.2 (s, -COOCH₂CH₃), 168.4 (s, -CONH-), 141.7 (s, C-2), 135.2 (s, C-1'), 134.8 (s, C-4), 133.0 (d, C-6), 132.3 (d, C-4'), 131.1 (s, C-2'), 130.1 (d, C-3'), 129.3 (d, C-6'), 127.6 (d, C-5'), 123.0 (d, C-5), 120.9 (d, C-3), 116.0 (s, C-1), 61.7 (t, -COOCH₂CH₃), 43.6 (t, CH₂), 14.6 (q, -COOCH₂CH₃). ESI-MS (m/z,%): 340 [M + Na]⁺, 342 [M + 2 + Na]⁺. HRESI-MS m/z 340.0716 [M + Na]⁺ (calcd for C₁₇H₁₆CINO₃Na 340.0713).

5.1.3.4. Ethyl 2-(2-(2-bromophenyl)acetamido)benzoate (45). 24% yield. pale yellow powder, mp 83–85 °C. ¹H NMR (CDCl₃) δ 11.13 (1H, br. s, NH), 8.75 (1H, d, J = 7.6 Hz, H-3),

8.02 (1H, dd, J = 7.6, 1.2 Hz, H-6), 7.62 (1H, d, J = 8.0 Hz, H-3'), 7.53 (1H, td, J = 7.6, 1.2 Hz, H-4), 7.45 (1H, dd, J = 8.0, 1.6 Hz, H-6'), 7.36 (1H, t, J = 8.0 Hz, H-5'), 7.20 (1H, td, J = 8.0, 1.6 Hz, H-4'), 7.08 (1H, t, J = 7.6 Hz, H-5), 4.32 (2H, q, J = 7.2 Hz OCH₂CH₃), 3.96 (2H, s, Ar-CH₂-NCO), 1.39 (3H, t, J = 7.2 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ 169.0 (s, -COOCH₂CH₃), 168.3 (s, -CONH-), 141.7 (s, C-2), 134.8 (s, C-1'), 133.4 (s, C-4), 132.4 (s, C-3'), 131.1 (s, C-4'), 129.5 (s, C-6'), 128.2 (s, C-5'), 125.8 (s, C-5), 123.0 (s, C-3), 123.9 (s, C-2), 116.0 (s, C-1), 61.7 (s, -COOCH₂CH₃), 46.1 (s, CH₂), 14.6 (s, -COOCH₂CH₃). ESI-MS (m/z,%): 384 [M + Na]⁺, 386 [M + 2 + Na]⁺. HRESI-MS m/z384.0211 [M + Na]⁺ (calcd for C₁₇H₁₆BrNO₃Na 384.0214).

5.1.3.5. Propvl 2-(2-(2-fluorophenyl)acetamido)benzoate (46). 38% yield. Pale yellow oil. ¹H NMR (CDCl₃) δ 11.23 (1H, br. s, NH), 8.74 (1H, d, J = 8.8 Hz, H-3), 8.03 (1H, dd, J = 8.0, 1.6 Hz, H-6), 7.53 (1H, td, J = 8.8, 1.6 Hz, H-4), 7.42 (1H, td, J = 8.0, 1.2 Hz, H-6'), 7.31 (1H, m, H-4'), 7.17 (1H, td, J = 8.0,1.2 Hz, H-5'), 7.12 (1H, dd, J = 8.8, 1.2 Hz, H-3'), 7.08 (1H, t, J = 8.0 Hz, H-5), 4.26 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₃), 3.84 (2H, s, Ar-CH₂-NCO), 1.80 (2H, qt, J = 7.6, 6.8 Hz, OCH₂CH₂CH₃), 1.05 (3H, t, J = 7.6 Hz, OCH₂CH₂CH₃). ¹³C NMR (CDCl₃) δ 169.3 (s, -COOCH₂CH₂CH₃), 168.5 (s, -CONH-), 162.8 (s, C-2', $J_{C-F} = 244$ Hz), 141.8 (s, C-2), 134.8 (d, C-4), 132.2 (d, C-4', $J_{C-F} = 4$ Hz), 131.1 (d, C-6), 129.7 (d, C-6', $J_{C-F} = 8$ Hz), 124.9 (d, C-5', J_{C-F} = 4 Hz), 123.0 (d, C-5), 122.2 (d, C-1', J_{C-F} = 15 Hz), 120.8 (d, C-3), 116.1 (d, C-3', $J_{C-F} = 16$ Hz), 115.9 (s, C-1), 67.3 (t, -COO<u>C</u>H₂CH₂CH₃), 39.1 (t, $J_{C-F} = 2$ Hz, CH₂), 22.4 (t, -COOCH2CH2CH3), 10.9 (q, -COOCH2CH2CH3). ESI-MS (m/z,%): 338 [M + Na]⁺. HRESI-MS m/z 338.1168 [M + Na]⁺ (calcd for C₁₈H₁₈FNO₃Na 338.1165).

5.1.3.6. Propyl 2-(2-(2-chlorophenyl)acetamido)benzoate (47). 40% yield. pale yellow powder, mp 101–103 °C. ¹H NMR $(CDCl_3) \delta 11.16 (1H, br. s, NH), 8.75 (1H, d, J = 8.0 Hz, H-3), 8.02$ (1H, dd, J = 8.0, 1.2 Hz, H-6, H-6), 7.53 (1H, td, J = 8.0, 1.2 Hz, H-4), 7.44 (2H, m, H-3', 6'), 7.29 (2H, m, H-4', 5'), 7.08 (1H, t, J = 8.0 Hz, H-5, $4.32 (2\text{H}, \text{t}, J = 6.8 \text{ Hz}, \text{OCH}_2\text{CH}_2\text{CH}_3)$, 3.94 (2H, s, Hz)Ar-CH₂-NCO), 1.78 (2H, qt, J = 7.2, 6.8 Hz, OCH₂CH₂CH₃), 1.04 $(3H, t, J = 7.2 \text{ Hz}, \text{OCH}_2\text{CH}_2\text{CH}_3)$. ¹³C NMR (CDCl₃) δ 169.2 (s, -COOCH2CH2CH3), 168.4 (s, -CONH-), 141.7 (s, C-2), 135.2 (s, C-1'), 134.8 (d,C-4), 133.0 (s, C-2'), 132.3 (d, C-6), 131.0 (d, C-4'), 130.1(d, C-3'), 129.3 (d, C-6'), 127.6 (d, C-5'), 123.0 (d, C-5), 120.9 (d, C-3), 116.0 (s, C-1), 67.2 (t, -COOCH₂CH₂CH₃), 43.6 (t, CH₂), 22.3 (t, -COOCH₂CH₂CH₃), 10.9 (q, -COOCH₂CH₂CH₃). ESI-MS (m/z,%): 354 [M + Na]⁺, 356 [M + 2 + Na]⁺. HRESI-MS m/z 354.0873 [M + Na]⁺ (calcd for C₁₈H₁₈ClNO₃Na 354.0870).

5.1.3.7. Propyl 2-(2-(2-bromophenyl)acetamido)benzoate (48). 40% yield. Pale yellow needles, mp 57–59 °C. ¹H NMR (CDCl₃) δ 11.14 (1H, br. s, NH), 8.75 (1H, d, J = 8.0 Hz, H-3), 8.03 (1H, dd, J = 8.0, 1.2 Hz, H-6), 7.63 (1H, d, J = 8.0 Hz, H-6'), 7.54 (1H, td, J = 8.4, 1.2 Hz, H-4), 7.45 (1H, dd, J = 7.6, 1.2 Hz, H-3'), 7.36 (1H, td, J = 8.4, 1.2 Hz, H-5'), 7.20 (1H, td, J = 7.6, 1.2 Hz,H-4'), 7.09 (1H, t, J = 7.6 Hz, H-5), 4.23 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₃), 3.96 (2H, s, Ar-CH₂-NCO), 1.80 (2H, qt, J = 7.2, 6.8 Hz, OCH₂CH₂CH₃), 1.05 (3H, t, J = 7.2 Hz, OCH₂CH₂CH₃). ¹³C NMR (CDCl₃) δ 169.1 (s, -COOCH₂CH₂CH₃), 168.4 (s, -CONH-), 141.7 (s, C-2), 134.8 (d, C-4), 134.8 (s, C-1'), 133.4 (d, C-3'), 132.4 (d, C-6), 131.1 (d, C-4'), 129.5 (d, C-6'), 128.2 (d, C-5'), 125.8 (d, C-5), 123.0 (d, C-3), 120.1 (s, C-2'), 116.0 (s, C-1),

67.2 (t, -COO<u>C</u>H₂CH₂CH₃), 46.1 (t, -COOCH₂<u>C</u>H₂CH₃), 22.4 (t, <u>C</u>H₂), 10.9 (q, -COOCH₂CH₂<u>C</u>H₃). ESI-MS (m/z,%): 398 [M + Na]⁺, 400 [M + 2 + Na]⁺. HRESI-MS m/z 398.0368 [M + Na]⁺ (calcd for C₁₈H₁₈BrNO₃Na 398.0369).

5.1.3.8. Butyl 2-(2-(2-fluorophenyl)acetamido)benzoate (49). 62% yield. Pale yellow powder, mp 48–50 °C. ¹H NMR (CDCl₃) δ 11.20 (1H, br. s, NH), 8.72 (1H, d, J = 8.4 Hz, H-3), 7.95 (1H, d, J =7.6 Hz, H-6), 7.42 (1H, t, J = 8.4 Hz, H-4), 7.36 (1H, t, J = 7.6 Hz, H-6'), 7.24 (1H, ddd, J = 7.2, 6.4, 1.6 Hz, H-4'), 7.10 (1H, t, J =7.6 Hz, H-5'), 7.07 (1H, t, J = 9.2 Hz, H-3'), 7.00 (1H, t, J = 7.6 Hz, H-5), 4.23 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₂CH₃), 3.78 (2H, s, Ar-CH₂-NCO), 2.67 (2H, q, J = 8.0, 6.8 Hz, OCH₂CH₂CH₂CH₂CH₃), 1.42 (2H, qt, J = 8.0, 7.2 Hz, OCH₂CH₂CH₂CH₃), 0.95 (3H, t, J = 7.2 Hz, OCH₂CH₂CH₂CH₂CH₃). ¹³C NMR (CDCl₃) δ 169.1 (s, -CONH-), 168.4 (s, -<u>C</u>OOCH₂CH₂CH₂CH₃), 161.6 (s, C-2', J_{C-F} = 245 Hz), 141.1 (s, C-2), 134.0 (d, C-4), 131.5 (d, C-6', J_{C-F} = 3 Hz), 130.3 (d, C-6), 128.9 (s, C-4', $J_{C-F} = 8$ Hz), 124.0 (d, C-5', $J_{C-F} =$ 3 Hz), 122.2 (d, C-5), 121.4 (d, C-1', J_{C-F} = 16 Hz), 120.0 (d, C-3), 115.3 (d, C-3'), 115.0 (d, C-1), 65.5 (t, -COOCH2CH2CH2CH3), 40.0 (t, CH_2 , J = 2 Hz), 31.0 (t, -COOCH₂CH₂CH₂CH₃), 19.6 (t, -COOCH₂CH₂CH₂CH₃), 14.1 (q, -COOCH₂CH₂CH₂CH₃). ESI-MS (m/z,%): 330 [M + H]⁺. HRESI-MS m/z 330.1504 [M + H]⁺ (calcd for C₁₉H₂₁FNO₃ 330.1505).

5.1.3.9. Butvl 2-(2-(2-chlorophenyl)acetamido)benzoate (50). 61% yield. pale yellow powder, mp 49–51 °C. ¹H NMR $(CDCl_3) \delta 11.14 (1H, br. s, NH), 8.74 (1H, d, J = 8.0 Hz, H-3),$ 7.94 (1H, d, J = 8.0 Hz, H-6), 7.43 (1H, td, J = 8.0 Hz, 1.2 Hz, H-4), 7.38 (1H, d, J = 7.6 Hz, H-6'), 7.36 (1H, dd, J = 8.0, 1.2 Hz, H-3'), 7.23 (1H, td, J = 7.6, 1.6 Hz, H-5'), 7.69 (1H, td, J = 7.6, 2.0 Hz, H-4'), 6.99 (1H, t, J = 8.0 Hz, H-5), 4.20 (2H, t, J = 6.8 Hz, OCH₂CH₂CH₂CH₃), 3.89 (2H, s, Ar-CH₂-NCO), 1.66 (2H, tt, J = 7.2, 6.8 Hz, OCH₂CH₂CH₂CH₃), 1.41 (2H, qt, J = 7.2, 6.8 Hz, OCH₂CH₂CH₂CH₂CH₃), 0.95 (3H, t, J = 6.8 Hz, OCH₂CH₂CH₂CH₂CH₃). ¹³C NMR (CDCl₃) δ 169.0 (s, -CONH-), 168.3 (s, -COOCH2CH2CH2CH3), 141.8 (s, C-2), 135.1 (d, C-4), 134.7 (s, C-1'), 133.0 (s, C-2'), 132.3 (d, C-6), 131.0 (d, C-4'), 130.0 (d, C-3'), 129.2 (d, C-6'), 127.6 (d, C-5'), 122.9 (d, C-5), 120.7 (d, C-3), 115.8 (s, C-1), 65.4 (t, -COOCH₂CH₂CH₂CH₃), 43.5 (t, CH₃), 31.0 (t, -COOCH₂CH₂CH₂CH₃), 19.6 (t, - $COOCH_2CH_2CH_2CH_3$), 14.1 (q, - $COOCH_2CH_2CH_2CH_3$). ESI-MS (m/z,%): 346 [M + H]⁺, 348 [M + 2 + H]⁺. HRESI-MS m/z 346.1207 [M + Na]⁺ (calcd for C₁₉H₂₁ClNO₃ 346.1209).

5.1.3.10. Butyl 2-(2-(2-bromophenyl)acetamido)benzoate (51). 74% yield. yellow powder, mp 41–43 °C. ¹H NMR (CDCl₃) δ 11.12 (1H, br. s, NH), 8.74 (1H, d, J = 8.0 Hz, H-3), 7.94 (1H, d, J = 8.0 Hz, H-6), 7.54 (1H, d, J = 8.0 HzH-3'), 7.44 (1H, t, J = 7.6 Hz, H-4), 7.39 (1H, d, J = 8.0 Hz, H-6'), 7.28 (1H, t, J = 7.6 Hz, H-5'), 7.11 (1H, t, J = 7.6 Hz, H-4'), 7.00 (1H, t, J = 7.6 Hz, H-5), 4.20 (2H, t, J = 6.8 Hz, OCHCH₂CH₂CH₃), 3.90 (2H, s, Ar-CH₂-NCO), 1.67 (2H, tt, J = 7.6, 6.8 Hz, OCHCH₂CH₂CH₃), 1.42 (2H, qt, J = 7.6, 6.8 Hz, OCHCH₂CH₂CH₃), 0.94 (3H, t, J = 6.8 Hz, OCHCH₂CH₂CH₃). ¹³C NMR (CDCl₃) δ 168.9 (s, -CONH-), 168.3 (s, -COOCH2CH2CH2CH3), 141.8 (s, C-2), 134.8 (d, C-4), 134.7 (d, C-1'), 133.3 (d, C-3'), 132.4 (d, C-6), 131.0 (d, C-4'), 129.5 (d, C-6'), 128.2 (d, C-5'), 125.7 (d, C-5), 122.9 (d, C-3), 120.7 (s, C-2'), 115.9 (s, C-1), 65.4 (t, -COOCH₂CH₂CH₂CH₂CH₃), 46.0 (t, CH₂), 31.0 (t, -COOCH₂CH₂CH₂CH₃), 19.6 (t, -COOCH₂CH₂CH₂CH₃), 14.2 (q, -COOCH₂CH₂CH₂CH₂CH₃).

ESI-MS (m/z,%): 390 [M + H]⁺, 392 [M + 2 + H]⁺. HRESI-MS m/z 390.0706 [M + H]⁺ (calcd for C₁₉H₂₁ClNO₃ 390.0705).

5.1.3.11. Ethyl 2-(3-(2-fluorophenyl)propanamido)benzoate (52). 39% yield. Pale yellow powder, mp 58-60 °C. ¹H NMR $(CDCl_3) \delta 11.12 (1H, br. s, NH), 8.71 (1H, d, J = 8.0 Hz, H-3),$ 8.02 (1H, dd, J = 8.0, 1.2 Hz, H-6), 7.52 (1H, td, J = 8.8, 1.6 Hz, H-6'), 7.26 (1H, td, J = 8.0, 1.2 Hz, H-4), 7.17 (1H, m, H-4'), 7.03 (3H, m, H-5, 3', 5'), 4.35 (2H, q, J = 6.8 Hz, OCH₂CH₃), 3.10 $(2H, t, J = 8.0 \text{ Hz}, CH_2CH_2), 2.76 (2H, t, J = 8.0 \text{ Hz}, CH_2CH_2),$ 1.40 (3H, t, J = 6.8 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ 171.2 (s, -COOCH₂CH₃), 168.6 (s, -CONH-), 161.6 (s, C-2', $J_{C-F} = 244$ Hz), 141.9 (s, C-2), 134.9 (s, C-4), 131.2 (d, C-6', $J_{C-F} = 6$ Hz), 131.1 (d, C-6), 128.4 (d, C-4 ', $J_{C-F} = 8$ Hz), 127.9 (s, C-1 ', $J_{C-F} = 15$ Hz), 124.5 (d, C-5', J_{C-F} = 4 Hz), 122.7 (d, C-5), 120.8 (d, C-3), 115.8 (s, C-3 ', $J_{C-F} = 22$ Hz), 115.6 (d, C-1), 61.8 (t, -COO<u>C</u>H₂CH₃), 38.9 $(t, CH_2CH_2), 25.3 (t, CH_2CH_2, J = 3 Hz), 14.6 (q, -COOCH_2CH_3).$ ESI-MS (*m*/*z*,%): 316 [M + H]⁺. HRESI-MS *m*/*z* 316.1346 [M + H]⁺ (calcd for $C_{18}H_{19}FNO_3$ 316.1349).

5.1.3.12. Ethyl 2-(3-(2-chlorophenyl)propanamido)benzoate (53). 37% yield. White powder, mp 48–50 °C. ¹H NMR (CDCl₃) δ 11.13 (1H, br. s, NH), 8.72 (1H, d, J = 8.4 Hz, H-3), 8.06 (1H, dd, *J* = 8.0, 1.2 Hz, H-6), 7.51 (1H, td, *J* = 8.4, 1.2 Hz, H-4), 7.38 (1H, dd, J = 7.2, 1.2 Hz, H-3'), 7.29 (1H, dd, J = 7.2, 1.6 Hz, H-6'), 7.15 (1H, td, J = 7.2, 1.2 Hz, H-5'), 7.12 (1H, td, J = 7.2, 1.6 Hz, H-4'), 7.04 (1H, t, J = 8.0 Hz, H-5), 4.39 (2H, q, J = 7.2 Hz, OCH₂CH₃), $3.18(2H, t, J = 8.0 Hz, CH_2CH_2), 2.76(2H, t, J = 8.0 Hz, CH_2CH_2),$ 1.38 (3H, t, J = 7.2 Hz, OCH₂CH₃). ¹³C NMR (CDCl₃) δ 171.2 (s, -COOCH₂CH₃), 168.6 (s, -CONH-), 141.9 (s, C-2), 138.6 (s, C-4), 134.9 (s, C-1'), 134.4 (d, C-6), 131.2 (s, C-2'), 131.0 (d, C-4'), 130.0 (d, C-3'), 128.2 (d, C-6'), 127.3 (d, C-5'), 122.7 (d, C-5), 120.7 (d, C-3), 115.5 (s, C-1), 61.8 (t, -COOCH2CH3), 38.5 (t, CH2CH2), 29.7 (t, CH_2CH_2), 14.6 (q, -COOCH₂CH₃). ESI-MS (m/z,%): 332 $[M + H]^+$, 334 $[M + 2 + H]^+$. HRESI-MS m/z 332.1054 $[M + H]^+$ (calcd for C₁₈H₁₉ClNO₃ 332.1053).

5.1.3.13. Ethyl 2-(3-(2-bromophenyl)propanamido)benzoate (54). 40% yield. White powder, mp 49–51 °C. ¹H NMR (CDCl₃) δ 11.13 (1H, br. s, NH), 8.72 (1H, d, J = 7.6 Hz, H-3), 8.00 (1H, d, J = 7.6 Hz, H-6), 7.51 (1H, d, J = 8.0 Hz, H-3'), 7.50 (1H, d, J = 7.6 Hz, H-6'), 7.29 (1H, d, J = 7.6 Hz, H-5'), 7.20 (1H, t, J = 8.0 Hz, H-4'), 7.04 (2H, t, J = 7.6 Hz, H-4, 5), 4.34 (2H, q, J = 7.2 Hz, OCH_2CH_3), 3.18 (2H, t, J = 8.0 Hz, CH_2CH_2), 2.76 (2H, t, J = 8.0 Hz, CH_2CH_2), 1.38 (3H, t, J = 7.2 Hz, OCH_2CH_3). ¹³C NMR (CDCl₃) δ 171.1 (s, -COOCH₂CH₃), 168.6 (s, -CONH-), 141.9 (s, C-2), 140.4 (s, C-1'), 134.9 (d, C-4), 133.3 (d, C-3'), 131.2 (d, C-6), 131.0 (d, C-4'), 128.4 (d, C-6'), 128.0 (d, C-5'), 124.8 (d, C-5), 122.8 (d, C-3), 120.7 (s, C-2'), 115.5 (s, C-1), 61.8 (t, -COOCH2CH3), 38.6 (t, CH2CH2), 32.3 (t, CH2CH2), 14.6 $(q, -COOCH_2CH_3)$. ESI-MS (m/z, %): 376 $[M + H]^+$, 378 [M + 2 +H]⁺. HRESI-MS *m*/*z* 376.0546 [M + H]⁺ (calcd for C₁₈H₁₉BrNO₃ 376.0548).

5.1.4. (E)-Ethyl **2-(3-(2-fluorophenyl)acrylamido)benzoate** (56). Compound 56 was synthesized in 5% yield from 2-fluorocinnamic acid (55, 1.5 mmole) in a procedure similar to 54. White powder, mp 108–110 °C. ¹H NMR (CDCl₃) δ 11.43 (1H, br. s, NH), 8.87 (1H, d, J = 8.8 Hz, H-3), 8.08 (1H, dd, J = 8.0, 1.2 Hz, H-6), 7.88 (1H, d, J = 16.0 Hz, H- α), 7.59 (2H, m, H-4, 6'), 7.35 (1H, ddd, J = 8.0, 5.8, 1.6 Hz, H-4'), 7.53 (1H, t, J = 8.0 Hz, H-5'), 7.13 (1H, dd, J = 10.0, 8.0 Hz, H-3'), 7.11 (1H, t,

 $J = 8.0 \text{ Hz}, \text{ H-5}), 6.74 (1\text{H}, \text{d}, J = 16.0 \text{ Hz}, \text{H-}\beta), 4.41 (2\text{H}, \text{q}, J = 7.2 \text{ Hz}, \text{OCH}_2\text{CH}_3), 1.44 (3\text{H}, \text{t}, J = 7.2 \text{ Hz}, \text{OCH}_2\text{CH}_3).^{13}\text{C}$ NMR (CDCl₃) δ 168.9 (s, -<u>C</u>OOCH₂CH₃), 164.7 (s, -CONH-), 161.8 (s, $J_{\text{CF}} = 253 \text{ Hz}, \text{C-}2'), 142.3 (s, \text{C-}2), 135.4 (d, \text{C-}\alpha), 135.0 (d, \text{C-}4), 131.7 (d, <math>J_{\text{CF}} = 9 \text{ Hz}, \text{C-}4'), 131.3 (d, \text{C-}6), 129.8 (d, \text{C-}5'), 125.1 (d, <math>J_{\text{CF}} = 6 \text{ Hz}, \text{C-}3'), 124.8 (d, <math>J_{\text{CF}} = 3 \text{ Hz}, \text{C-}6'), 123.2 (s, J_{\text{CF}} = 11 \text{ Hz}, \text{C-}1'), 123.0 (d, \text{C-}5), 121.0 (d, \text{C-}3), 116.6 (d, \text{C-}\beta), 115.7 (s, \text{C-}1), 61.9 (t, -COOCH₂CH₃), 14.6 (q, -COOCH₂CH₃). ESI-MS (<math>m/z$,%): 314 [M + H]⁺. HRESI-MS m/z 314.1194 [M + H]⁺ (calcd for C₁₈H₁₇FNO₃ 314.1192).

5.2. Biological assays

5.2.1. Preparation of human neutrophils³⁶. Blood was taken from healthy human donors (20–32 years old) by venipuncture, using a protocol approved by the institutional review board at Chang Gung Memorial Hospital. Neutrophils were isolated with a standard method of dextran sedimentation prior to centrifugation in a Ficoll Hypaque gradient and hypotonic lysis of erythrocytes.³⁶ Purified neutrophils that contained >98% viable cells, as determined by the trypan blue exclusion method, were resuspended in calcium (Ca²⁺)-free HBSS buffer at pH 7.4, and were maintained at 4 °C before use.

5.2.2. Measurement of O_2 ⁻⁻ generation³⁶. The assay of O_2^{--} generation was based on the SOD-inhibitable reduction of ferricytochrome c.³⁶ In brief, after supplementation with 0.5 mg ml⁻¹ ferricytochrome c and 1 mM Ca²⁺, neutrophils were equilibrated at 37 °C for 2 min and incubated with drugs for 5 min. Cells were activated with 100 nM FMLP for 10 min. When FMLP was used as a stimulant, CB (1 µg ml⁻¹) was incubated for 3 min before activation by the peptide (FMLP/CB). Changes in absorbance with the reduction of ferricytochrome c at 550 nm were continuously monitored in a double-beam, six-cell positioner spectrophotometer with constant stirring (Hitachi U-3010, Tokyo, Japan). Calculations were based on the differences in the reactions with and without SOD (100 U ml⁻¹) divided by the extinction coefficient for the reduction of ferricytochrome c ($\varepsilon = 21.1/\text{mM}/10$ mm).

5.2.3. Measurement of elastase release. Degranulation of azurophilic granules was determined by elastase release as described previously.³⁶ Experiments were performed using MeO-Suc-Ala-Ala-Pro-Val-*p*-nitroanilide as the elastase substrate. Briefly, after supplementation with MeO-Suc-Ala-Ala-Pro-Val-*p*-nitroanilide (100 μ M), neutrophils (5 × 10⁵ ml⁻¹) were equilibrated at 37 °C for 2 min and incubated with drugs for 5 min. Cells were activated by100 nM FMLP and 0.5 μ g ml⁻¹ CB, and changes in absorbance at 405 nm were continuously monitored to assay elastase release. The results are expressed as the percent of the initial rate of elastase release in the FMLP/CB-activated, drug-free control system.

5.2.4. Determination of cAMP concentrations^{36,43}. cAMP levels were assayed using an enzyme immunoassay kit (Amersham Biosciences, Buckinghamshire, UK). Human neutrophils were incubated with drugs for the indicated time before stimulation with or without FMLP for another 1 min, and the reaction was terminated by adding 0.5% dodecyltrimethylammonium bromide. Samples were then centrifuged at $3000 \times g$ for 5 min at 4 °C. The

supernatants were used as a source for the cAMP samples. The assay was performed according to the manufacturer's instructions.

5.2.5. Phosphodiesterase assay^{39,40}. PDE activity was modified and determined as the method.^{39,40} Washed human platelets were used for both PDE3 and PDE5 analyses and human U937 cells for PDE4. Purified protein containing PDE3, 4 or 5 enzyme and concentration of each test compounds were resuspended in 50 mM Tris-HCl containing 5 mM MgCl₂ (pH 7.5). Subsequently, the enzyme (11.5 mg mL⁻¹, 10 µL) was incubated with Tris-HCl (80 µL) and 10 µM cyclic GMP or cyclic AMP substrate (final concentration 1.01 µM containing 0.01 µM [3H]-cyclic GMP or [³H]-cyclic AMP) was added. After 15 min at 25 °C, the samples were heated to 100 °C for 2 min. The reaction was terminated by boiling for 2 min and the resulting AMP was converted to adenosine by the addition of 10 mg mL⁻¹ (10 μ L) snake venom nucleotidase and further incubation at 25 °C for 20 min. An AGI-X2 resin (200 ml) was added to bind all unconverted cyclic GMP or cyclic AMP. After centrifugation, the supernatant was removed for determination of radiolabelled guanosine or adenosine by a liquid scintillation counter. The test compounds were dissolved separately in DMSO and tested at concentrations of 300, 100, 30, 10, 3, 1, and 0.3 μ M, respectively.

5.2.6. Statistical analysis. Results are expressed as the mean \pm S.E.M. Data were analysed using the GraphPad Prism software (GraphPad Software, San Diego, CA). Statistical analysis was performed using Student's *t*-test or one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison test. A value of p < 0.05 was considered statistically significant.

5.2.7. Cytotoxic assay. Compounds were tested against HepG2 cells using the MTT method as described before.⁴⁴ A total of 1×10^5 HepG2 cells were seeded in 24-well plates for 24 h and made quiescent by incubating in DMEM containing 0.2% FBS for 24 h before use and cells were incubated with control and **49** (100 μ M) followed by incubating for another 24 h. For the growth rate determination, isopropanol solution mixed with tetrazolium salt was added to the wells and incubated for an additional 4 h at 37 °C.⁴⁵ The optical density of the dissolved material was measured spectrophotometrically at 570 nm, and assays were performed in triplicate.

5.2.8. Preparation of washed human platelets. Human blood anticoagulated with acid citrate dextrose (ACD) was obtained from healthy human volunteers who had not taken any drugs within the last two weeks. The platelet suspension was then prepared according to the washing procedure previously described.^{32,33} Platelets were finally suspended in Tyrode's solution containing Ca²⁺ (2 mM), glucose (11.1 mM) and bovine serum albumin (3.5 mg ml⁻¹) at a concentration of 3×10^8 platelets ml⁻¹.

5.2.9. Measurement of platelet aggregation. Platelet aggregation was measured turbidimetrically with a light-transmission aggregometer (Chrono-Log Co., USA). The platelet suspension was incubated with dimethyl sulfoxide (DMSO, vehicle) or test compounds (10 μ M) at 37 °C for 3 min under a stirring condition (1200 rpm) prior to the addition of thrombin as inducer. The extent of platelet aggregation was measured as the maximal increase of light transmission within 5 min after the treatment of thrombin.^{32,33}

The investigation was supported by research grants to P. W. Hsieh from the National Science Council of the Republic of China (NSC95-2320-B-037-002) and Chang Gung Medical Research Foundation (CMRPG-690031) in Taiwan.

References

- 1 F. Dallegei and L. Ottonello, Inflammation Res., 1997, 46, 382-391.
- 2 Y. L. Fung and C. C. Silliman, Transfus. Med. Rev., 2009, 23, 266-283.
- 3 J. Y El-Benna, P. M. Dang, M. A. Gougerot-Pocidalo, J. C. Marie and F. Braut-Boucher, *Exp. Mol. Med.*, 2009, **41**, 217–225.
- 4 D. van Berlo, A. Wessels, A. W. Boots, V. Wilhelmi, A. M. Scherbart, K. Gerloff, F. J. van Schooten, C. Albrecht and R. P. Schins, *Free Radical Biol. Med.*, 2010, 49, 1685–1693.
- 5 G. Bartosz, Biochem. Pharmacol., 2009, 77, 1303-1315.
- 6 R. Anderson, A. J. Theron, C. M. Gravett, H. C. Steel, G. R. Tintinger and C. Feldman, Br. J. Pharmacol., 2009, 156, 105–115.
- 7 V. Lagente, C. Martin-Chouly, E. Boichot, M. A. Martins and P. M. R. Silva, *Mem. Inst. Oswaldo Cruz*, 2005, **100**, 131–136.
- 8 H. F. Tang, J. J. Lu, J. F. Tang, X. Zheng, Y. Q. Liang, X. F. Wang, Y. J. Wang, L. G. Mao and J. Q. Chen, *Int. Immunopharmacol.*, 2010, **10**, 406–411.
- 9 T. Kyoi, L. Noda, M. Oka and Y. Ukai, Life Sci., 2004, 76, 71-83.
- 10 R. A. Burgos, M. A. Hidalgo, C. D. Figueroa, I. Conejeros and J. L. Hancke, *Mini-Rev. Med. Chem.*, 2009, 9, 153–168.
- 11 R. Rahimi, S. Ghiasi, H. Azimi, S. Fakhari and M. Abdollahi, *Cytokine*, 2010, 49, 123–129.
- 12 P. J. Barnes, J. Allergy Clin. Immunol., 2007, 119, 1055-1062.
- 13 K. F. Chung, Eur. J. Pharmacol., 2006, 533, 110-117.
- 14 P. W. Manley, P. Furet, G. Bold, J. Bruggen, J. Mestan, T. Meyer, C. R. Schnell and J. Wood, J. Med. Chem., 2002, 45, 5687–5693.
- 15 S. P. Gupta and S. A. Kumaran, *Bioorg. Med. Chem.*, 2005, 13, 5454– 5462.
- 16 D. Joseph-McCarthy, K. Parris, A. Huang, A. Failli, D. Quagliato, E. G. Dushin, E. Novikova, E. Severina, M. Tuckman, P. J. Petersen, C. Dean, C. C. Fritz, T. Meshulam, M. DeCenzo, L. Dick, I. J. McFadyen, W. S. Somers, F. Lovering and A. M. Gilbert, *J. Med. Chem.*, 2005, 48, 7960–7969.
- 17 G. S. Sheppard, J. Wang, M. Kawai, S. D. Fidanze, N. Y. BaMaung, S. A. Erickson, D. M. Barnes, J. S. Tedeow, L. Kolaczkowski, A. Vasudevan, D. C. Park, G. T. Wang, W. J. Sanders, R. A. Mantei, F. Palazzo, L. Tucker-Garcia, P. Lou, Q. Zhang, C. H. Park, K. H. Kim, A. Petros, E. Olejniczak, D. Nettesheim, P. Hajduk, J. Henkin, R. Lesniewski, S. K. Davidsen and R. L. Bell, *J. Med. Chem.*, 2006, **49**, 3832–3849.
- 18 M. Shahaei, R. Sabet, M. B. Ziari, B. Moeinifard, A. Fassihi and R. Karbakhsh, *Eur. J. Med. Chem.*, 2010, 45, 4499–4508.
- 19 C. Harteneck, H. Frenzel and R. Kraft, *Cardiovasc. Drug Rev.*, 2007, 25, 61–75.
- 20 P. Brozie, J. Cesar, A. Kovac, M. Davies, A. P. Johnson, C. W. G. Fishwick, T. L. Rizner and S. Gobec, *Chem.-Biol. Interact.*, 2009, 178, 158–164.

- 21 N. Yamaoka, H. Kodama, Y. Izuhara, T. Miyata and K. Meguro, *Chem. Pharm. Bull.*, 2011, **59**, 215–224.
- 22 L. Lassiani, M. V. Pavan, F. Berti, G. Kokotos, T. Markidis, L. Mennuni, F. Makovec and A. Varnavas, *Bioorg. Med. Chem.*, 2009, 17, 2336–2350.
- 23 D. Hadjipavlou-Litina, P. Braiuca, L. Lassiani, M. Pavan and A. Varnavas, *Bioorg. Med. Chem.*, 2009, 17, 5198–5206.
- 24 D. De Luca, M. Saviano, L. Lassiani, K. Yannakopoulou, P. Stefanidou, L. Aloj, G. Morelli and A. Varnavas, J. Med. Chem., 2006, 49, 2456–2462.
- 25 C. Congiu, M. T. Cocco, V. Lilliu and V. Onnis, J. Med. Chem., 2005, 48, 8245–8252.
- 26 M. T. Cocco, C. Congiu, V. Lilliu and V. Onnis, *Bioorg. Med. Chem. Lett.*, 2004, 14, 5787–5791.
- 27 T. Nittoli, K. Curran, S. Insaf, M. DiGrandi, M. Orlowski, R. Chopra, A. Agarwal, A. Y. M. Howe, A. Prashad, M. Brawner, B. Johnson, A. Sutherland, K. Whelless, B. Feld, J. O'Connell, T. S. Mansour and J. Bloom, J. Med. Chem., 2007, 50, 2108–2116.
- 28 L. J. Simons, B. W. Caprathe, M. Callahan, J. M. Graham, T. Kimura, Y. Lai, H. LeVine III, W. Lipinski, A. T. Sakkab, Y. Tasaki, L. C. Walker, T. Yasunaga, Y. Ye, N. Zhung and C. E. Augelli-Szafran, *Bioorg. Med. Chem. Lett.*, 2009, **19**, 654–657.
- 29 H. Kankaanranta and E. Moilanen, *Mol. Pharmacol.*, 1995, 47, 1006– 1013.
- 30 S. Sharma, V. K. Srivastva and A. Kumar, *Eur. J. Med. Chem.*, 2002, 37, 689–697.
- 31 J. J. Inglis, G. Criado, M. Andrews, M. Feldmann, R. O. Williams and M. L. Selley, *Rheumatology*, 2007, 46, 1428–1432.
- 32 P. W. Hsieh, T. L. Hwang, C. C. Wu, S. Z. Chiang, C. I. Wu and Y. C. Wu, *Bioorg. Med. Chem. Lett.*, 2007, **17**, 1812–1817.
- 33 P. W. Hsieh, S. Z. Chiang, C. C. Wu, Y. C. Lo, Y. T. Shih and Y. C. Wu, Bioorg. Med. Chem., 2008, 16, 5803–5814.
- 34 T. J. R. Cheng, Y. T. Wu, S. T. Yang, K. H. Lo, S. K. Chen, Y. H. Chen, W. I. Huang, C. H. Yuan, C. W. Guo, L. Y. Huang, K. T. Chen, H. W. Shih, Y. S. E. Cheng, W. C. Cheng and C. H. Wong, *Bioorg. Med. Chem.*, 2010, **18**, 8512–8529.
- 35 M. A. Farooq Biabani, M. Baake, B. Lovisetto, H. Laatsch, E. Helmke and H. Weyland, J. Antibiot., 1997, 50, 479–483.
- 36 H. P. Yu, P. W. Hsieh, Y. J. Chang, P. J. Chung, L. M. Kuo and T. L. Hwang, *Biochem. Pharmacol.*, 2009, **78**, 983–992.
- 37 B. Kuhn, P. Mohr and M. Stahl, J. Med. Chem., 2010, 53, 2601-2611.
- 38 N. A. Meanwell, J. Med. Chem., 2011, 54, 2529-2591.
- 39 B. N. Wu, R. J. Lin, Y. C. Lo, K. P. Shen, C. C. Wang, Y. T. Lin and J. J. Chen, Br. J. Pharmacol., 2004, 142, 1105–1114.
- 40 G. Fouche, N. Nieuwenhuizen, V. Maharaj, S. van Rooyen, N. Harding, R. Nthambeleni, J. Jayakumar, F. Kirstein, B. Emedi and P. Meoni, J. *Ethnopharmacol.*, 2011, **133**, 843–849.
- 41 K. H. Banner and N. J. Press, Br. J. Pharmacol., 2009, 157, 892-906.
- 42 A. Kodimuthali, S. S. Lal Jabaris and M. Pal, *J. Med. Chem.*, 2008, **51**, 5471–5489.
- 43 T. L. Hwang, S. H. Yeh, Y. L. Leu, C. Y. Chern and H. C. Hsu, Br. J. Pharmacol., 2009, 148, 78–87.
- 44 Y. C. Hung, P. W. Wang and T. L. Pan, Biochim. Biophys. Acta, Proteins Proteomics, 2010, 1804, 1310–1321.
- 45 K. Berg, M. B. Hansen and S. E. Nielsen, APMIS, 1990, 98, 156-162.